KU LEUVEN

The Lifted UOV signature scheme

<u>Ward Beullens</u> Bart Preneel Alan Szepieniec Frederik Vercauteren

imec COSIC

5 April 2018

The **Lifted Unbalanced Oil and Vinegar** scheme is a variant of the UOV signature scheme.

One of the oldest and best studied multivariate signature schemes is **Unbalanced Oil and Vinegar** (UOV). It is fast and has small signatures, but the **public keys are large**.

We propose a simple adaptation of UOV that has **much smaller pub-lic keys**.

Unbalanced Oil and Vinegar
 The main improvement
 Brief security analysis
 Some more improvements
 Conclusion

The UOV signature scheme uses a map $\mathcal{F}:\mathbb{F}_q^n\to\mathbb{F}_q^m$ known as a UOV map.

Partition the n variables into v = n - m vinegar variables x_1, \dots, x_v and m oil variables x_{v+1}, \dots, x_n . A UOV map consists of m Polynomials of the form

$$f(x) = \sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i,j} x_i x_j + \sum_{i=1}^{n} \beta_i x_i + \gamma \qquad \qquad \alpha_{i,j}, \beta_i, \gamma \in \mathbb{F}_q$$

Given $\mathbf{y} \in \mathbb{F}_q^m$ we can efficiently find $\mathbf{x} \in \mathbb{F}_q^{\ n}$ such that $\mathcal{F}(\mathbf{x}) = \mathbf{y}$.

- Pick values for the vinegar variables randomly
- Solve linear system of m equations and m variables to find the values of the the oil variables.

KU LEUVEN

We hide the structure of \mathcal{F} by composing it with a random invertible linear map \mathcal{T} to get the public key $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$. The public key $(\mathcal{F}, \mathcal{T})$ can be used to find preimages of \mathcal{P} .

Signature scheme:

Key generation : Pick \mathcal{F}, \mathcal{T} randomly, compute $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$ Signing : Hash and sign: $\mathbf{s} = \mathcal{P}^{-1}(\mathcal{H}(d))$ Verification : check if $\mathcal{P}(\mathbf{s}) = \mathcal{H}(d)$

The public key consists of m quadratic polynomials in n variables, so roughly $m\frac{n^2}{2}\log_2(q)$ bits

Example

For 128 bits of security we have $m\approx 50,\,n\approx 150,$ and $q=2^8,\,{\rm So}$

$$|pk| \approx 50 \times \frac{150^2}{2} \times 8 \text{ bits } \approx 560 \text{ KB}.$$

5/12

The public key consists of m quadratic polynomials in n variables, so roughly $m\frac{n^2}{2}\log_2(q)$ bits

Example

For 128 bits of security we have $m \approx 50$, $n \approx 150$, and $q = 2^8$, So

$$|pk| \approx 50 \times \frac{150^2}{2} \times 8 \text{ bits } \approx 560 \text{ KB}.$$

Optimization by Petzoldt reduces |pk| to $\frac{m^3}{2}\log_2(q)$ Example

$$|pk| pprox rac{50^3}{2} imes 8$$
 bits $pprox 62$ KB

KU LEUVEN

Hardness of solving polynomial systems

The hardness of solving polynomial systems depends on the size of the field.

Figure: The number of variables needed such that solving a polynomial system is hard for different finite fields

KULE

The idea is to use two fields:

- \bullet A small field \mathbb{F}_2 for the public and secret keys i.e. \mathcal{P}, \mathcal{F} and \mathcal{T}
- \bullet A large extension for output of ${\cal H}$ and the signatures. e.g. $\mathbb{F}_{2^{32}}$

The maps \mathcal{P},\mathcal{F} and \mathcal{T} are defined over $\mathbb{F}_2,$ but lifted to a large extension field.

Key generation is identical to UOV over \mathbb{F}_2 , signature generation and verification is identical to UOV over the large field.

Forging a signature for a document d requires finding a solution to a multivariate system over $\mathbb{F}_{31}.$

$$18x_1^2 + 7x_1x_2 + 5x_3 + 22x_1x_4 + 29x_4x_5 + 3x_5 \equiv 20 \mod 31$$

$$6x_2x_3 + 12x_3^2 + 25x_2x_6 + 7x_3x_4 + 11x_3x_5 + 30x_6^2 \equiv 11 \mod 31$$

$$15x_1x_2 + 9x_2x_3 + 12x_3x_4 + 25x_2 + 28x_5x_6 \equiv \underbrace{8}_{\mathcal{H}(d)} \mod 31$$

Forging a signature for a document d requires finding a solution to a multivariate system over $\mathbb{F}_{2^{32}}$.

$$x_1^2 + x_1x_2 + x_3 + x_1x_4 + x_4x_5 + x_5 = 1 + \alpha^2 + \dots + \alpha^{30}$$

$$x_2x_3 + x_3^2 + x_2x_6 + x_3x_4 + x_3x_5 + x_6^2 = 1 + \alpha + \dots + \alpha^{29}$$

$$x_1x_2 + x_2x_3 + x_3x_4 + x_2 + x_5x_6$$

$$\underbrace{\alpha + \alpha^5 + \dots + \alpha^{31}}_{\mathcal{P}(\mathbf{x})}$$

Direct attack

A direct attack tries to solve the system $\mathcal{P}(\mathbf{s}) = \mathcal{H}(d)$ to forge a signature \mathbf{s} .

- Theoretically: Degree of regularity of the system is the same as in the case of UOV over the large field.
- Experimentally: The Algebraic solver F_4 is not significantly better at attacking the new scheme than in the case of original UOV over the large field.

Key recovery attack

Tries to recover the secret key $(\mathcal{F}, \mathcal{T})$ from the public key \mathcal{P} . This attack is fully equivalent to key recovery attack against UOV over \mathbb{F}_2 , so attacks are well understood.

KUI

 \bullet We use a secret key in 'normal form', i.e. ${\cal T}$ of the form

$$egin{pmatrix} \mathbf{1}_{v imes v} & \mathbf{T} \ \mathbf{0}_{m imes v} & \mathbf{1}_{m imes m} \end{pmatrix}$$

- We store the randomness used to generate the public key, and recompute the secret key each signing session needed.
- Message recovery mode ($\pm 15\%$ of |sig|).
- Trade off between |sig| and |pk|.

Table: Parameter sets achieving security level 2 of NIST

(q,m,n)	sig	pk	sk	KeyGen	Sign	Verify
$(2^8, 63, 256)$	0.3 KB	15.5 KB	32B	21 Mc	5.6 Mc	4.9 Mc
$(2^{48}, 49, 242)$	1.7 KB	7.3 KB	32B	15 Mc	34 Mc	24 Mc

sl	(q,m,n)	sig	pk	sk	KeyGen	Sign	Verify
2	$(2^8, 63, 256)$	0.3 KB	16 KB	32B	21	6	5
4	$(2^8, 90, 351)$	0.4 KB	45 KB	32B	81	22	17
5	$(2^8, 117, 404)$	0.5 KB	97 KB	32B	146	36	30

Disadvantages:

- Public key size (But 10x smaller than other MQ schemes)
- no security reduction

Advantages:

12/12

KU LEU

- Signature size
- Secret key size (minimal)
- Based on UOV (since 1999)