
NTRU-HRSS-KEM

Andreas Hülsing1, Joost Rijneveld2, John Schanck3, Peter Schwabe2

1 Eindhoven University of Technology, The Netherlands
2 Radboud University, Nijmegen, The Netherlands

3 Institute for Quantum Computing, University of Waterloo, Canada

2018-04-13

1 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)
Arithmetic is in R ∼= Z[x]/(xn − 1)

Parameters: n, p, q ∈ Z with gcd(p, q) = 1 and p � q.
Sample spaces Lf , Lg , Lr , and Lm are sets of “short” elements of R.

For concreteness, think: n prime, q = 2blog nc+O(1), and p = 3.
Sample spaces are subsets of {−1, 0, 1}n.

2 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)
Arithmetic is in R = (Zn,+,~), where ~ is cyclic convolution.

Parameters: n, p, q ∈ Z with gcd(p, q) = 1 and p � q.
Sample spaces Lf , Lg , Lr , and Lm are sets of “short” elements of R.

For concreteness, think: n prime, q = 2blog nc+O(1), and p = 3.
Sample spaces are subsets of {−1, 0, 1}n.

2 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)
Arithmetic is in R = (Zn,+,~), where ~ is cyclic convolution.
Reduction modulo an integer t is into the interval [−t/2, t/2).

Parameters: n, p, q ∈ Z with gcd(p, q) = 1 and p � q.
Sample spaces Lf , Lg , Lr , and Lm are sets of “short” elements of R.

For concreteness, think: n prime, q = 2blog nc+O(1), and p = 3.
Sample spaces are subsets of {−1, 0, 1}n.

2 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)
Arithmetic is in R = (Zn,+,~), where ~ is cyclic convolution.
Reduction modulo an integer t is into the interval [−t/2, t/2).

Parameters: n, p, q ∈ Z with gcd(p, q) = 1 and p � q.
Sample spaces Lf , Lg , Lr , and Lm are sets of “short” elements of R.

For concreteness, think: n prime, q = 2blog nc+O(1), and p = 3.
Sample spaces are subsets of {−1, 0, 1}n.

2 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)
Arithmetic is in R = (Zn,+,~), where ~ is cyclic convolution.
Reduction modulo an integer t is into the interval [−t/2, t/2).

Parameters: n, p, q ∈ Z with gcd(p, q) = 1 and p � q.
Sample spaces Lf , Lg , Lr , and Lm are sets of “short” elements of R.

For concreteness, think: n prime, q = 2blog nc+O(1), and p = 3.
Sample spaces are subsets of {−1, 0, 1}n.

2 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)

Key Generation
1: Sample f and g from Lf and Lg .
2: (Try to) compute Fq such that (f ~ Fq) mod q = 1.
3: (Try to) compute Fp such that (f ~ Fp) mod p = 1.
4: If step 2 or step 3 fails, go to 1.
5: h = (p ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + m) mod q.

Output: Ciphertext c.

Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

3 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)

Key Generation
1: Sample f and g from Lf and Lg .
2: (Try to) compute Fq such that (f ~ Fq) mod q = 1.
3: (Try to) compute Fp such that (f ~ Fp) mod p = 1.
4: If step 2 or step 3 fails, go to 1.
5: h = (p ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + m) mod q.

Output: Ciphertext c.

Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

3 / 14

NTRU (Hoffstein–Pipher–Silverman 1998)

Key Generation
1: Sample f and g from Lf and Lg .
2: (Try to) compute Fq such that (f ~ Fq) mod q = 1.
3: (Try to) compute Fp such that (f ~ Fp) mod p = 1.
4: If step 2 or step 3 fails, go to 1.
5: h = (p ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + m) mod q.

Output: Ciphertext c.

Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

3 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Crucial step is:

v = (c ~ f) mod q

≡ (r ~ h + m) ~ f (mod q)
≡ (r ~ p ~ g ~ Fq + m) ~ f (mod q)
≡ r ~ p ~ g + m ~ f (mod q).

Correctness depends on equality in

(c ~ f) mod q ?= r ~ p ~ g + m ~ f .

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.

I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Crucial step is:

v = (c ~ f) mod q ≡ (r ~ h + m) ~ f (mod q)

≡ (r ~ p ~ g ~ Fq + m) ~ f (mod q)
≡ r ~ p ~ g + m ~ f (mod q).

Correctness depends on equality in

(c ~ f) mod q ?= r ~ p ~ g + m ~ f .

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.

I (Fq ~ f) mod q = 1.

Crucial step is:

v = (c ~ f) mod q ≡ (r ~ h + m) ~ f (mod q)
≡ (r ~ p ~ g ~ Fq + m) ~ f (mod q)

≡ r ~ p ~ g + m ~ f (mod q).

Correctness depends on equality in

(c ~ f) mod q ?= r ~ p ~ g + m ~ f .

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Crucial step is:

v = (c ~ f) mod q ≡ (r ~ h + m) ~ f (mod q)
≡ (r ~ p ~ g ~ Fq + m) ~ f (mod q)
≡ r ~ p ~ g + m ~ f (mod q).

Correctness depends on equality in

(c ~ f) mod q ?= r ~ p ~ g + m ~ f .

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Crucial step is:

v = (c ~ f) mod q ≡ (r ~ h + m) ~ f (mod q)
≡ (r ~ p ~ g ~ Fq + m) ~ f (mod q)
≡ r ~ p ~ g + m ~ f (mod q).

Correctness depends on equality in

(c ~ f) mod q ?= r ~ p ~ g + m ~ f .

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Equality in
(c ~ f) mod q ?= r ~ p ~ g + m ~ f

holds when
|r ~ p ~ g + m ~ f |∞ < q/2.

4 / 14

Why HPS98 decryption works
Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: m′ = (v ~ Fp) mod p.

Output: m′.

Recall:
I c = (r ~ h + m) mod q.
I h = (p ~ g ~Fq) mod q.
I (Fq ~ f) mod q = 1.

Equality in
(c ~ f) mod q ?= r ~ p ~ g + m ~ f

holds when
|r ~ p ~ g + m ~ f |∞ < q/2.

Parameters, incl. Lf ,Lg ,Lr ,Lm, are chosen to ensure this usually holds.
It is possible to choose parameters for which this always holds.

4 / 14

NTRU-HRSS

5 / 14

NTRU-HRSS
Arithmetic is still in R ∼= Z[x]/(xn − 1),

but now we will pay attention to the fact that

xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1).

It will be helpful to define S ∼= Z[x]/(Φn).

5 / 14

NTRU-HRSS
Arithmetic is still in R ∼= Z[x]/(xn − 1),
but now we will pay attention to the fact that

xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1).

It will be helpful to define S ∼= Z[x]/(Φn).

5 / 14

NTRU-HRSS
Arithmetic is still in R ∼= Z[x]/(xn − 1),
but now we will pay attention to the fact that

xn − 1 = (x − 1) (xn−1 + xn−2 + · · ·+ x + 1)︸ ︷︷ ︸
Φn

.

It will be helpful to define S ∼= Z[x]/(Φn).

5 / 14

NTRU-HRSS
Parameters: Prime n for which both 2 and 3 generate (Z/n)×,
p = 3, and q = 2d3.5+log ne.

Define
T = {v ∈ {−1, 0, 1}n : vn−1 = 0}

and
T+ = {v ∈ T : 〈x ~ v , v〉 ≥ 0}.

Sample spaces: Lf = Lg = T+ and Lr = Lm = T .

For the experts: We want to do NTRU in S = Z[x]/(Φn), but we want
perfect correctness and small q. The usual decryption algorithm in S
costs us a factor of 2 in q. Better decryption algorithms require analysis
of “gap failures” (see: Silverman, NTRU Tech Report #11, 2001).
Using T+ saves us a factor of

√
2, with little effort.

6 / 14

NTRU-HRSS
Parameters: Prime n for which both 2 and 3 generate (Z/n)×,
p = 3, and q = 2d3.5+log ne.

Define
T = {v ∈ {−1, 0, 1}n : vn−1 = 0}

and
T+ = {v ∈ T : 〈x ~ v , v〉 ≥ 0}.

Sample spaces: Lf = Lg = T+ and Lr = Lm = T .

For the experts: We want to do NTRU in S = Z[x]/(Φn), but we want
perfect correctness and small q. The usual decryption algorithm in S
costs us a factor of 2 in q. Better decryption algorithms require analysis
of “gap failures” (see: Silverman, NTRU Tech Report #11, 2001).
Using T+ saves us a factor of

√
2, with little effort.

6 / 14

NTRU-HRSS
Parameters: Prime n for which both 2 and 3 generate (Z/n)×,
p = 3, and q = 2d3.5+log ne.

Define
T = {v ∈ {−1, 0, 1}n : vn−1 = 0}

and
T+ = {v ∈ T : 〈x ~ v , v〉 ≥ 0}.

Sample spaces: Lf = Lg = T+ and Lr = Lm = T .

For the experts: We want to do NTRU in S = Z[x]/(Φn), but we want
perfect correctness and small q. The usual decryption algorithm in S
costs us a factor of 2 in q. Better decryption algorithms require analysis
of “gap failures” (see: Silverman, NTRU Tech Report #11, 2001).
Using T+ saves us a factor of

√
2, with little effort.

6 / 14

NTRU-HRSS
Parameters: Prime n for which both 2 and 3 generate (Z/n)×,
p = 3, and q = 2d3.5+log ne.

Define
T = {v ∈ {−1, 0, 1}n : vn−1 = 0}

and
T+ = {v ∈ T : 〈x ~ v , v〉 ≥ 0}.

Sample spaces: Lf = Lg = T+ and Lr = Lm = T .

For the experts: We want to do NTRU in S = Z[x]/(Φn), but we want
perfect correctness and small q. The usual decryption algorithm in S
costs us a factor of 2 in q. Better decryption algorithms require analysis
of “gap failures” (see: Silverman, NTRU Tech Report #11, 2001).
Using T+ saves us a factor of

√
2, with little effort.

6 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: (Try to) compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: (Try to) compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: If step 2 or step 3 fails, go to 1.
5: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: (Try to) compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: (Try to) compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: If step 2 or step 3 fails, go to 1.
5: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: Compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: Compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: Compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: Compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: Compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: Compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

Where
LiftP(m) = (x − 1) ~ m0

with m0 ∈ T and
LiftP(m) ≡ m in S/p.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: Compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: Compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

7 / 14

NTRU-HRSS

Key Generation
1: Sample f and g from Lf and Lg .
2: Compute Fq such that (f ~ Fq) mod q ≡ 1 in S.
3: Compute Fp such that (f ~ Fp) mod p ≡ 1 in S.
4: h = (p ~ (x − 1) ~ g ~ Fq) mod q.

Output: Private key (f ,Fp) and public key h.

Encryption
Input: Message m ∈ Lm.

1: Sample r from Lr .
2: c = (r ~ h + LiftP(m)) mod q.

Output: Ciphertext c.

Decryption
Input: Ciphertext c.

1: v = (c ~ f) mod q.
2: u = (u ~ Fp) mod p.
3: m′ = (u − un−1 · Φn) mod p.

Output: m′

7 / 14

Correctness condition

NTRU-HRSS decryption will succeed if

|r ~ p ~ (x − 1) ~ g + LiftP(m) ~ f |∞ < q/2.

The triangle inequality gives:

|r ~ p ~ (x − 1) ~ g |∞ < 2pn.
|LiftP(m) ~ f |∞ < 2n.

But we prove that for f , g ∈ T+

|r ~ p ~ (x − 1) ~ g |∞ <
√
2pn.

|LiftP(m) ~ f |∞ <
√
2n.

8 / 14

Correctness condition

NTRU-HRSS decryption will succeed if

|r ~ p ~ (x − 1) ~ g + LiftP(m) ~ f |∞ < q/2.

The triangle inequality gives:

|r ~ p ~ (x − 1) ~ g |∞ < 2pn.
|LiftP(m) ~ f |∞ < 2n.

But we prove that for f , g ∈ T+

|r ~ p ~ (x − 1) ~ g |∞ <
√
2pn.

|LiftP(m) ~ f |∞ <
√
2n.

8 / 14

Correctness condition

NTRU-HRSS decryption will succeed if

|r ~ p ~ (x − 1) ~ g + LiftP(m) ~ f |∞ < q/2.

The triangle inequality gives:

|r ~ p ~ (x − 1) ~ g |∞ < 2pn.
|LiftP(m) ~ f |∞ < 2n.

But we prove that for f , g ∈ T+

|r ~ p ~ (x − 1) ~ g |∞ <
√
2pn.

|LiftP(m) ~ f |∞ <
√
2n.

8 / 14

Why not just do NTRU in S?

“NTRU in S” decryption will succeed if

|r ~ p ~ g + m ~ f − bΦn|∞ < q/2,

where b is the coefficient of xn−1 in r ~ p ~ g + m ~ f .

Without knowing more about b, success is only guaranteed when

|r ~ p ~ g + m ~ f |∞ < q/4.

Known (1996?) workaround: translate by δΦn before “mod p”.
Open problems:

I Choose δ in constant time.
I Save a factor ≥

√
2 using this approach.

9 / 14

Why not just do NTRU in S?

“NTRU in S” decryption will succeed if

|r ~ p ~ g + m ~ f − bΦn|∞ < q/2,

where b is the coefficient of xn−1 in r ~ p ~ g + m ~ f .

Without knowing more about b, success is only guaranteed when

|r ~ p ~ g + m ~ f |∞ < q/4.

Known (1996?) workaround: translate by δΦn before “mod p”.
Open problems:

I Choose δ in constant time.
I Save a factor ≥

√
2 using this approach.

9 / 14

Why not just do NTRU in S?

“NTRU in S” decryption will succeed if

|r ~ p ~ g + m ~ f − bΦn|∞ < q/2,

where b is the coefficient of xn−1 in r ~ p ~ g + m ~ f .

Without knowing more about b, success is only guaranteed when

|r ~ p ~ g + m ~ f |∞ < q/4.

Known (1996?) workaround: translate by δΦn before “mod p”.

Open problems:
I Choose δ in constant time.
I Save a factor ≥

√
2 using this approach.

9 / 14

Why not just do NTRU in S?

“NTRU in S” decryption will succeed if

|r ~ p ~ g + m ~ f − bΦn|∞ < q/2,

where b is the coefficient of xn−1 in r ~ p ~ g + m ~ f .

Without knowing more about b, success is only guaranteed when

|r ~ p ~ g + m ~ f |∞ < q/4.

Known (1996?) workaround: translate by δΦn before “mod p”.
Open problems:

I Choose δ in constant time.
I Save a factor ≥

√
2 using this approach.

9 / 14

How the NTRU submissions avoid decryption failures

I NTRU-PKE n = 743, p = 3, q = 2048:
I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

How the NTRU submissions avoid decryption failures
I NTRU-PKE n = 743, p = 3, q = 2048:

I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

How the NTRU submissions avoid decryption failures
I NTRU-PKE n = 743, p = 3, q = 2048:

I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

How the NTRU submissions avoid decryption failures
I NTRU-PKE n = 743, p = 3, q = 2048:

I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

How the NTRU submissions avoid decryption failures
I NTRU-PKE n = 743, p = 3, q = 2048:

I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

How the NTRU submissions avoid decryption failures
I NTRU-PKE n = 743, p = 3, q = 2048:

I fixed weight 494 for f and g ,
I uniform trinary for r and m,
I expected failure rate 2−112 (w.r.t. honest r and m).

I SS-NTRU-PKE n = 1024, p = 2, q = 230 + 213 + 1:
I wide gaussian for f , g , r , and m,
I expected failure rate 2−80 (w.r.t. honest r and m).

I Streamlined NTRU Prime n = 761, p = 3, q = 4591:
I fixed weight 286 for f and r ,
I uniform trinary for g and m.

I NTRU-HRSS n = 701, p = 3, q = 8192:
I uniform T+ for f and g ,
I uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily
the distributions that are used in implementations.

10 / 14

The “evaluate at 1” map

Three solutions:

Control sample spaces.
I NTRU-PKE.

Multiply the HPS98 values of h and m by (x − 1).
I NTRU-HRSS.

Use a different ring.
I SS-NTRU-PKE.
I NTRU Prime.

11 / 14

The “evaluate at 1” map
Recall: R ∼= Z[x]/(xn − 1) and

xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1).

So x 7→ 1 is a ring homomorphism R → Z.
This implies, e.g.,

c(1) = pr(1)h(1) + m(1) mod q.

Three solutions:

Control sample spaces.
I NTRU-PKE.

Multiply the HPS98 values of h and m by (x − 1).
I NTRU-HRSS.

Use a different ring.
I SS-NTRU-PKE.
I NTRU Prime.

11 / 14

The “evaluate at 1” map
Recall: R ∼= Z[x]/(xn − 1) and

xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1).
So x 7→ 1 is a ring homomorphism R → Z.

This implies, e.g.,
c(1) = pr(1)h(1) + m(1) mod q.

Three solutions:

Control sample spaces.
I NTRU-PKE.

Multiply the HPS98 values of h and m by (x − 1).
I NTRU-HRSS.

Use a different ring.
I SS-NTRU-PKE.
I NTRU Prime.

11 / 14

The “evaluate at 1” map
Recall: R ∼= Z[x]/(xn − 1) and

xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1).
So x 7→ 1 is a ring homomorphism R → Z.
This implies, e.g.,

c(1) = pr(1)h(1) + m(1) mod q.

Three solutions:

Control sample spaces.
I NTRU-PKE.

Multiply the HPS98 values of h and m by (x − 1).
I NTRU-HRSS.

Use a different ring.
I SS-NTRU-PKE.
I NTRU Prime.

11 / 14

The “evaluate at 1” map

Three solutions:

Control sample spaces.
I NTRU-PKE.

Multiply the HPS98 values of h and m by (x − 1).
I NTRU-HRSS.

Use a different ring.
I SS-NTRU-PKE.
I NTRU Prime.

11 / 14

CCA transform
We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:
I Sample m ∈ T .
I Hash m to get coins for encryption and a session key.
I Encrypt m, using the coins to sample r ∈ T .
I Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof.
Accounts for 141 bytes of the ciphertext.

12 / 14

CCA transform
We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:
I Sample m ∈ T .
I Hash m to get coins for encryption and a session key.
I Encrypt m, using the coins to sample r ∈ T .
I Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof.
Accounts for 141 bytes of the ciphertext.

12 / 14

CCA transform
We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:
I Sample m ∈ T .
I Hash m to get coins for encryption and a session key.
I Encrypt m, using the coins to sample r ∈ T .
I Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof.
Accounts for 141 bytes of the ciphertext.

12 / 14

CCA transform
We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:
I Sample m ∈ T .
I Hash m to get coins for encryption and a session key.
I Encrypt m, using the coins to sample r ∈ T .
I Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof.
Accounts for 141 bytes of the ciphertext.

12 / 14

Parameters, security, and performance
We claim n = 701 (q = 8192) meets requirements of security category 1.

Cycles∗
Keygen: 294 847
Encaps: 38 456
Decaps: 68 458

Bytes
sk: 1422
pk: 1140
c: 1140 + 141

∗ Optimized AVX2 impl. on 3.5 GHz Intel Core i7-4770K CPU.

13 / 14

Recap
Pros:

I No decryption failures.
I Simple CCA transform (no padding mechanism).
I No fixed weight distributions.
I Public keys and ciphertexts map to 0 under x 7→ 1.
I No invertibility checks in key gen.
I New routines (LiftP, sampling from T+) are cheap.

Cons:
I q is a factor of

√
2 larger than in HPS98 (for same correctness).

I Need to compute Fp.

14 / 14

	Overview

