NTRU-HRSS-KEM

Andreas Hülsing ${ }^{1}$, Joost Rijneveld ${ }^{2}$, John Schanck ${ }^{3}$, Peter Schwabe ${ }^{2}$
${ }^{1}$ Eindhoven University of Technology, The Netherlands
${ }^{2}$ Radboud University, Nijmegen, The Netherlands
${ }^{3}$ Institute for Quantum Computing, University of Waterloo, Canada

2018-04-13

NTRU (Hoffstein-Pipher-Silverman 1998)
Arithmetic is in $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$

NTRU (Hoffstein-Pipher-Silverman 1998)

Arithmetic is in $R=\left(\mathbb{Z}^{n},+, \circledast\right)$, where \circledast is cyclic convolution.

NTRU (Hoffstein-Pipher-Silverman 1998)

Arithmetic is in $R=\left(\mathbb{Z}^{n},+, \circledast\right)$, where \circledast is cyclic convolution. Reduction modulo an integer t is into the interval $[-t / 2, t / 2)$.

NTRU (Hoffstein-Pipher-Silverman 1998)

Arithmetic is in $R=\left(\mathbb{Z}^{n},+, \circledast\right)$, where \circledast is cyclic convolution. Reduction modulo an integer t is into the interval $[-t / 2, t / 2)$.

Parameters: $n, p, q \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$ and $p \ll q$. Sample spaces $\mathcal{L}_{f}, \mathcal{L}_{g}, \mathcal{L}_{r}$, and \mathcal{L}_{m} are sets of "short" elements of R.

NTRU (Hoffstein-Pipher-Silverman 1998)

Arithmetic is in $R=\left(\mathbb{Z}^{n},+, \circledast\right)$, where \circledast is cyclic convolution. Reduction modulo an integer t is into the interval $[-t / 2, t / 2)$.

Parameters: $n, p, q \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$ and $p \ll q$. Sample spaces $\mathcal{L}_{f}, \mathcal{L}_{g}, \mathcal{L}_{r}$, and \mathcal{L}_{m} are sets of "short" elements of R.

For concreteness, think: n prime, $q=2^{\lfloor\log n\rfloor+O(1)}$, and $p=3$. Sample spaces are subsets of $\{-1,0,1\}^{n}$.

NTRU (Hoffstein-Pipher-Silverman 1998)

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: (Try to) compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q=1$.
3: (Try to) compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p=1$.
4: If step 2 or step 3 fails, go to 1 .
5: $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

NTRU (Hoffstein-Pipher-Silverman 1998)

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: (Try to) compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q=1$.
3: (Try to) compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p=1$.
4: If step 2 or step 3 fails, go to 1 .
5: $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+m) \bmod q$.
Output: Ciphertext c.

NTRU (Hoffstein-Pipher-Silverman 1998)

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: (Try to) compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q=1$.
3: (Try to) compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p=1$.
4: If step 2 or step 3 fails, go to 1 .
5: $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+m) \bmod q$.
Output: Ciphertext c.

Decryption

Input: Ciphertext c.
$1: v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Why HPS98 decryption works

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Crucial step is:

$$
v=(c \circledast f) \bmod q
$$

Why HPS98 decryption works

Decryption
Input: Ciphertext c.

Recall:

- $c=(r \circledast h+m) \bmod q$.
$1: v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Crucial step is:

$$
v=(c \circledast f) \bmod q \equiv(r \circledast h+m) \circledast f \quad(\bmod q)
$$

Why HPS98 decryption works

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.

Crucial step is:

$$
\begin{aligned}
v=(c \circledast f) \bmod q & \equiv(r \circledast h+m) \circledast f \quad(\bmod q) \\
& \equiv\left(r \circledast p \circledast g \circledast F_{q}+m\right) \circledast f \quad(\bmod q)
\end{aligned}
$$

Why HPS98 decryption works

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
- $\left(F_{q} \circledast f\right) \bmod q=1$.

Crucial step is:

$$
\begin{aligned}
v=(c \circledast f) \bmod q & \equiv(r \circledast h+m) \circledast f \quad(\bmod q) \\
& \equiv\left(r \circledast p \circledast g \circledast F_{q}+m\right) \circledast f \quad(\bmod q) \\
& \equiv r \circledast p \circledast g+m \circledast f \quad(\bmod q) .
\end{aligned}
$$

Why HPS98 decryption works

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
- $\left(F_{q} \circledast f\right) \bmod q=1$.

Crucial step is:

$$
\begin{aligned}
v=(c \circledast f) \bmod q & \equiv(r \circledast h+m) \circledast f \quad(\bmod q) \\
& \equiv\left(r \circledast p \circledast g \circledast F_{q}+m\right) \circledast f \quad(\bmod q) \\
& \equiv r \circledast p \circledast g+m \circledast f \quad(\bmod q) .
\end{aligned}
$$

Correctness depends on equality in

$$
(c \circledast f) \bmod q \stackrel{?}{=} r \circledast p \circledast g+m \circledast f .
$$

Why HPS98 decryption works

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $m^{\prime}=\left(v \circledast F_{p}\right) \bmod p$.
Output: m^{\prime}.

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
- $\left(F_{q} \circledast f\right) \bmod q=1$.

Why HPS98 decryption works

Decryption

Input: Ciphertext c.

$$
\begin{aligned}
& \text { 1: } v=(c \circledast f) \bmod q . \\
& \text { 2: } m^{\prime}=\left(v \circledast F_{p}\right) \bmod p .
\end{aligned}
$$

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
- $\left(F_{q} \circledast f\right) \bmod q=1$.

Equality in

$$
(c \circledast f) \bmod q \stackrel{?}{=} r \circledast p \circledast g+m \circledast f
$$

holds when

$$
|r \circledast p \circledast g+m \circledast f|_{\infty}<q / 2
$$

Why HPS98 decryption works

Decryption

Input: Ciphertext c.

$$
\begin{aligned}
& \text { 1: } v=(c \circledast f) \bmod q . \\
& \text { 2: } m^{\prime}=\left(v \circledast F_{p}\right) \bmod p .
\end{aligned}
$$

Output: m^{\prime}.

Recall:

- $c=(r \circledast h+m) \bmod q$.
- $h=\left(p \circledast g \circledast F_{q}\right) \bmod q$.
- $\left(F_{q} \circledast f\right) \bmod q=1$.

Equality in

$$
(c \circledast f) \bmod q \stackrel{?}{=} r \circledast p \circledast g+m \circledast f
$$

holds when

$$
|r \circledast p \circledast g+m \circledast f|_{\infty}<q / 2
$$

Parameters, incl. $\mathcal{L}_{f}, \mathcal{L}_{g}, \mathcal{L}_{r}, \mathcal{L}_{m}$, are chosen to ensure this usually holds. It is possible to choose parameters for which this always holds.

NTRU-HRSS

NTRU-HRSS

Arithmetic is still in $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$,

NTRU-HRSS

Arithmetic is still in $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$, but now we will pay attention to the fact that

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)
$$

NTRU-HRSS

Arithmetic is still in $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$, but now we will pay attention to the fact that

$$
x^{n}-1=(x-1) \underbrace{\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)}_{\Phi_{n}} .
$$

It will be helpful to define $S \cong \mathbb{Z}[x] /\left(\Phi_{n}\right)$.

NTRU-HRSS

Parameters: Prime n for which both 2 and 3 generate $(\mathbb{Z} / n)^{\times}$, $p=3$, and $q=2^{\lceil 3.5+\log n\rceil}$.

NTRU-HRSS

Parameters: Prime n for which both 2 and 3 generate $(\mathbb{Z} / n)^{\times}$, $p=3$, and $q=2^{\lceil 3.5+\log n\rceil}$.

Define

$$
\mathcal{T}=\left\{v \in\{-1,0,1\}^{n}: v_{n-1}=0\right\}
$$

and

$$
\mathcal{T}_{+}=\{v \in \mathcal{T}:\langle x \circledast v, v\rangle \geq 0\}
$$

NTRU-HRSS

Parameters: Prime n for which both 2 and 3 generate $(\mathbb{Z} / n)^{\times}$, $p=3$, and $q=2^{\lceil 3.5+\log n\rceil}$.

Define

$$
\mathcal{T}=\left\{v \in\{-1,0,1\}^{n}: v_{n-1}=0\right\}
$$

and

$$
\mathcal{T}_{+}=\{v \in \mathcal{T}:\langle x \circledast v, v\rangle \geq 0\}
$$

Sample spaces: $\mathcal{L}_{f}=\mathcal{L}_{g}=\mathcal{T}_{+}$and $\mathcal{L}_{r}=\mathcal{L}_{m}=\mathcal{T}$.

NTRU-HRSS

Parameters: Prime n for which both 2 and 3 generate $(\mathbb{Z} / n)^{\times}$, $p=3$, and $q=2^{\lceil 3.5+\log n\rceil}$.

Define

$$
\mathcal{T}=\left\{v \in\{-1,0,1\}^{n}: v_{n-1}=0\right\}
$$

and

$$
\mathcal{T}_{+}=\{v \in \mathcal{T}:\langle x \circledast v, v\rangle \geq 0\}
$$

Sample spaces: $\mathcal{L}_{f}=\mathcal{L}_{g}=\mathcal{T}_{+}$and $\mathcal{L}_{r}=\mathcal{L}_{m}=\mathcal{T}$.

For the experts: We want to do NTRU in $S=\mathbb{Z}[x] /\left(\Phi_{n}\right)$, but we want perfect correctness and small q. The usual decryption algorithm in S costs us a factor of 2 in q. Better decryption algorithms require analysis of "gap failures" (see: Silverman, NTRU Tech Report \#11, 2001). Using \mathcal{T}_{+}saves us a factor of $\sqrt{2}$, with little effort.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: (Try to) compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: (Try to) compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: If step 2 or step 3 fails, go to 1 .
5: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: (Try to) compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: (Try to) compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: If step 2 or step 3 fails, go to 1 .
5: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: Compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: Compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: Compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: Compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+\operatorname{Lift} P(m)) \bmod q$.
Output: Ciphertext c.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: Compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: Compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+\operatorname{Lift}(m)) \bmod q$.
Output: Ciphertext c.

Where

$$
\operatorname{Lift} P(m)=(x-1) \circledast m_{0}
$$

with $m_{0} \in \mathcal{T}$ and
$\operatorname{Lift} P(m) \equiv m$ in S / p.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: Compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: Compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+\operatorname{Lift}(m)) \bmod q$.
Output: Ciphertext c.

NTRU-HRSS

Key Generation

1: Sample f and g from \mathcal{L}_{f} and \mathcal{L}_{g}.
2: Compute F_{q} such that $\left(f \circledast F_{q}\right) \bmod q \equiv 1$ in S.
3: Compute F_{p} such that $\left(f \circledast F_{p}\right) \bmod p \equiv 1$ in S.
4: $h=\left(p \circledast(x-1) \circledast g \circledast F_{q}\right) \bmod q$.
Output: Private key $\left(f, F_{p}\right)$ and public key h.

Encryption

Input: Message $m \in \mathcal{L}_{m}$.
1: Sample r from \mathcal{L}_{r}.
2: $c=(r \circledast h+\operatorname{Lift} P(m)) \bmod q$.
Output: Ciphertext c.

Decryption

Input: Ciphertext c.
1: $v=(c \circledast f) \bmod q$.
2: $u=\left(u \circledast F_{p}\right) \bmod p$.
3: $m^{\prime}=\left(u-u_{n-1} \cdot \Phi_{n}\right) \bmod p$.
Output: m^{\prime}

Correctness condition

NTRU-HRSS decryption will succeed if

$$
|r \circledast p \circledast(x-1) \circledast g+\operatorname{Lift} P(m) \circledast f|_{\infty}<q / 2 .
$$

Correctness condition

NTRU-HRSS decryption will succeed if

$$
|r \circledast p \circledast(x-1) \circledast g+\operatorname{Lift} P(m) \circledast f|_{\infty}<q / 2 .
$$

The triangle inequality gives:

$$
\begin{array}{r}
|r \circledast p \circledast(x-1) \circledast g|_{\infty}<2 p n . \\
|\operatorname{Lift} P(m) \circledast f|_{\infty}<2 n .
\end{array}
$$

Correctness condition

NTRU-HRSS decryption will succeed if

$$
|r \circledast p \circledast(x-1) \circledast g+\operatorname{Lift} P(m) \circledast f|_{\infty}<q / 2 .
$$

The triangle inequality gives:

$$
\begin{array}{r}
|r \circledast p \circledast(x-1) \circledast g|_{\infty}<2 p n . \\
|\operatorname{Lift} P(m) \circledast f|_{\infty}<2 n .
\end{array}
$$

But we prove that for $f, g \in \mathcal{T}_{+}$

$$
\begin{array}{r}
|r \circledast p \circledast(x-1) \circledast g|_{\infty}<\sqrt{2} p n . \\
|\operatorname{Lift} P(m) \circledast f|_{\infty}<\sqrt{2} n .
\end{array}
$$

Why not just do NTRU in S ?

"NTRU in S " decryption will succeed if

$$
\left|r \circledast p \circledast g+m \circledast f-b \Phi_{n}\right|_{\infty}<q / 2
$$

where b is the coefficient of x^{n-1} in $r \circledast p \circledast g+m \circledast f$.

Why not just do NTRU in S ?

"NTRU in S " decryption will succeed if

$$
\left|r \circledast p \circledast g+m \circledast f-b \Phi_{n}\right|_{\infty}<q / 2
$$

where b is the coefficient of x^{n-1} in $r \circledast p \circledast g+m \circledast f$.
Without knowing more about b, success is only guaranteed when

$$
|r \circledast p \circledast g+m \circledast f|_{\infty}<q / 4 .
$$

Why not just do NTRU in S ?

"NTRU in S " decryption will succeed if

$$
\left|r \circledast p \circledast g+m \circledast f-b \Phi_{n}\right|_{\infty}<q / 2
$$

where b is the coefficient of x^{n-1} in $r \circledast p \circledast g+m \circledast f$.
Without knowing more about b, success is only guaranteed when

$$
|r \circledast p \circledast g+m \circledast f|_{\infty}<q / 4 .
$$

Known (1996?) workaround: translate by $\delta \Phi_{n}$ before "mod p".

Why not just do NTRU in S ?

"NTRU in S " decryption will succeed if

$$
\left|r \circledast p \circledast g+m \circledast f-b \Phi_{n}\right|_{\infty}<q / 2
$$

where b is the coefficient of x^{n-1} in $r \circledast p \circledast g+m \circledast f$.
Without knowing more about b, success is only guaranteed when

$$
|r \circledast p \circledast g+m \circledast f|_{\infty}<q / 4 .
$$

Known (1996?) workaround: translate by $\delta \Phi_{n}$ before "mod p".
Open problems:

- Choose δ in constant time.
- Save a factor $\geq \sqrt{2}$ using this approach.

How the NTRU submissions avoid decryption failures

How the NTRU submissions avoid decryption failures

- NTRU-PKE $n=743, p=3, q=2048:$
- fixed weight 494 for f and g,
- uniform trinary for r and m,
- expected failure rate 2^{-112} (w.r.t. honest r and m).
- SS-NTRU-PKE $n=1024, p=2, q=2^{30}+2^{13}+1$:
- wide gaussian for f, g, r, and m,
- expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime $n=761, p=3, q=4591$:
- fixed weight 286 for f and r,
- uniform trinary for g and m.
- NTRU-HRSS $n=701, p=3, q=8192$:
- uniform \mathcal{T}_{+}for f and g,
- uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily the distributions that are used in implementations.

How the NTRU submissions avoid decryption failures

- NTRU-PKE $n=743, p=3, q=2048:$
- fixed weight 494 for f and g,
- uniform trinary for r and m,
- expected failure rate 2^{-112} (w.r.t. honest r and m).
- SS-NTRU-PKE $n=1024, p=2, q=2^{30}+2^{13}+1$:
- wide gaussian for f, g, r, and m,
- expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime $n=761, p=3, q=4591$:
- fixed weight 286 for f and r,
- uniform trinary for g and m.
- NTRU-HRSS $n=701, p=3, q=8192$:
- uniform \mathcal{T}_{+}for f and g,
- uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily the distributions that are used in implementations.

How the NTRU submissions avoid decryption failures

- NTRU-PKE $n=743, p=3, q=2048:$
- fixed weight 494 for f and g,
- uniform trinary for r and m,
- expected failure rate 2^{-112} (w.r.t. honest r and m).
- SS-NTRU-PKE $n=1024, p=2, q=2^{30}+2^{13}+1$:
- wide gaussian for f, g, r, and m,
- expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime $n=761, p=3, q=4591$:
- fixed weight 286 for f and r,
- uniform trinary for g and m.
- NTRU-HRSS $n=701, p=3, q=8192$:
- uniform \mathcal{T}_{+}for f and g,
- uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily the distributions that are used in implementations.

How the NTRU submissions avoid decryption failures

- NTRU-PKE $n=743, p=3, q=2048:$
- fixed weight 494 for f and g,
- uniform trinary for r and m,
- expected failure rate 2^{-112} (w.r.t. honest r and m).
- SS-NTRU-PKE $n=1024, p=2, q=2^{30}+2^{13}+1$:
- wide gaussian for f, g, r, and m,
- expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime $n=761, p=3, q=4591$:
- fixed weight 286 for f and r,
- uniform trinary for g and m.
- NTRU-HRSS $n=701, p=3, q=8192$:
- uniform \mathcal{T}_{+}for f and g,
- uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily the distributions that are used in implementations.

How the NTRU submissions avoid decryption failures

- NTRU-PKE $n=743, p=3, q=2048:$
- fixed weight 494 for f and g,
- uniform trinary for r and m,
- expected failure rate 2^{-112} (w.r.t. honest r and m).
- SS-NTRU-PKE $n=1024, p=2, q=2^{30}+2^{13}+1$:
- wide gaussian for f, g, r, and m,
- expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime $n=761, p=3, q=4591$:
- fixed weight 286 for f and r,
- uniform trinary for g and m.
- NTRU-HRSS $n=701, p=3, q=8192$:
- uniform \mathcal{T}_{+}for f and g,
- uniform trinary for r and m.

Note: these are the distributions assumed in correctness proofs, not necessarily the distributions that are used in implementations.

The "evaluate at 1" map

The "evaluate at 1" map
Recall: $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$ and

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)
$$

The "evaluate at 1" map
Recall: $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$ and

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right) .
$$

So $x \mapsto 1$ is a ring homomorphism $R \rightarrow \mathbb{Z}$.

The "evaluate at 1" map

Recall: $R \cong \mathbb{Z}[x] /\left(x^{n}-1\right)$ and

$$
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right) .
$$

So $x \mapsto 1$ is a ring homomorphism $R \rightarrow \mathbb{Z}$.
This implies, e.g.,

$$
c(1)=\operatorname{pr}(1) h(1)+m(1) \bmod q .
$$

The "evaluate at 1" map

Three solutions:
Control sample spaces.

- NTRU-PKE.

Multiply the HPS98 values of h and m by $(x-1)$.

- NTRU-HRSS.

Use a different ring.

- SS-NTRU-PKE.
- NTRU Prime.

CCA transform

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA transform

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- Hash m to get coins for encryption and a session key.
- Encrypt m, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

CCA transform

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- Hash m to get coins for encryption and a session key.
- Encrypt m, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

CCA transform

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- Hash m to get coins for encryption and a session key.
- Encrypt m, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof. Accounts for 141 bytes of the ciphertext.

Parameters, security, and performance

We claim $n=701(q=8192)$ meets requirements of security category 1 .

	Cycles*
Keygen:	294847
Encaps:	38456
Decaps:	68458

	Bytes
sk:	1422
pk:	1140
c:	$1140+141$

* Optimized AVX2 impl. on 3.5 GHz Intel Core i7-4770K CPU.

Recap

Pros:

- No decryption failures.
- Simple CCA transform (no padding mechanism).
- No fixed weight distributions.
- Public keys and ciphertexts map to 0 under $x \mapsto 1$.
- No invertibility checks in key gen.
- New routines (LiftP, sampling from \mathcal{T}_{+}) are cheap.

Cons:

- q is a factor of $\sqrt{2}$ larger than in HPS98 (for same correctness).
- Need to compute F_{p}.

