NTRU-HRSS-KEM

Andreas Hülsing¹, Joost Rijneveld², John Schanck³, Peter Schwabe²

¹ Eindhoven University of Technology, The Netherlands
² Radboud University, Nijmegen, The Netherlands
³ Institute for Quantum Computing, University of Waterloo, Canada

2018-04-13

Arithmetic is in $R \cong \mathbb{Z}[x]/(x^n - 1)$

Arithmetic is in $R = (\mathbb{Z}^n, +, \circledast)$, where \circledast is cyclic convolution.

Arithmetic is in $R = (\mathbb{Z}^n, +, \circledast)$, where \circledast is cyclic convolution. Reduction modulo an integer *t* is into the interval [-t/2, t/2).

Arithmetic is in $R = (\mathbb{Z}^n, +, \circledast)$, where \circledast is cyclic convolution. Reduction modulo an integer *t* is into the interval [-t/2, t/2).

Parameters: $n, p, q \in \mathbb{Z}$ with gcd(p, q) = 1 and $p \ll q$. Sample spaces \mathcal{L}_f , \mathcal{L}_g , \mathcal{L}_r , and \mathcal{L}_m are sets of "short" elements of R.

Arithmetic is in $R = (\mathbb{Z}^n, +, \circledast)$, where \circledast is cyclic convolution. Reduction modulo an integer *t* is into the interval [-t/2, t/2).

Parameters: $n, p, q \in \mathbb{Z}$ with gcd(p, q) = 1 and $p \ll q$. Sample spaces \mathcal{L}_f , \mathcal{L}_g , \mathcal{L}_r , and \mathcal{L}_m are sets of "short" elements of R.

For concreteness, think: *n* prime, $q = 2^{\lfloor \log n \rfloor + O(1)}$, and p = 3. Sample spaces are subsets of $\{-1, 0, 1\}^n$.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: (Try to) compute F_q such that $(f \circledast F_q) \mod q = 1$.
- 3: (Try to) compute F_p such that $(f \circledast F_p) \mod p = 1$.
- 4: If step 2 or step 3 fails, go to 1.

5:
$$h = (p \circledast g \circledast F_q) \mod q$$
.

Key Generation

1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .

- 2: (Try to) compute F_q such that $(f \circledast F_q) \mod q = 1$.
- 3: (Try to) compute F_p such that $(f \circledast F_p) \mod p = 1$.
- 4: If step 2 or step 3 fails, go to 1.

5:
$$h = (p \circledast g \circledast F_q) \mod q$$
.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample *r* from \mathcal{L}_r . 2: $c = (r \circledast h + m) \mod q$. **Output:** Ciphertext *c*.

Key Generation

1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .

- 2: (Try to) compute F_q such that $(f \circledast F_q) \mod q = 1$.
- 3: (Try to) compute F_p such that $(f \circledast F_p) \mod p = 1$.
- 4: If step 2 or step 3 fails, go to 1.

5:
$$h = (p \circledast g \circledast F_q) \mod q$$
.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample *r* from \mathcal{L}_r . 2: $c = (r \circledast h + m) \mod q$. Output: Ciphertext *c*.

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'.

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'.

$$v = (c \circledast f) \mod q$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

•
$$c = (r \circledast h + m) \mod q$$
.

$$v = (c \circledast f) \mod q \equiv (r \circledast h + m) \circledast f \pmod{q}$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

•
$$c = (r \circledast h + m) \mod q$$
.

•
$$h = (p \circledast g \circledast F_q) \mod q$$
.

$$v = (c \circledast f) \mod q \equiv (r \circledast h + m) \circledast f \pmod{q}$$
$$\equiv (r \circledast p \circledast g \circledast F_q + m) \circledast f \pmod{q}$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

- ► $c = (r \circledast h + m) \mod q$.
- $h = (p \circledast g \circledast F_q) \mod q$.

•
$$(F_q \circledast f) \mod q = 1.$$

$$v = (c \circledast f) \mod q \equiv (r \circledast h + m) \circledast f \pmod{q}$$
$$\equiv (r \circledast p \circledast g \circledast F_q + m) \circledast f \pmod{q}$$
$$\equiv r \circledast p \circledast g + m \circledast f \pmod{q}.$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

- ► $c = (r \circledast h + m) \mod q$.
- $h = (p \circledast g \circledast F_q) \mod q$.

•
$$(F_q \circledast f) \mod q = 1.$$

Crucial step is:

$$v = (c \circledast f) \mod q \equiv (r \circledast h + m) \circledast f \pmod{q}$$
$$\equiv (r \circledast p \circledast g \circledast F_q + m) \circledast f \pmod{q}$$
$$\equiv r \circledast p \circledast g + m \circledast f \pmod{q}.$$

Correctness depends on equality in

$$(c \circledast f) \mod q \stackrel{?}{=} r \circledast p \circledast g + m \circledast f.$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

- ► $c = (r \circledast h + m) \mod q$.
- $h = (p \circledast g \circledast F_q) \mod q$.

•
$$(F_q \circledast f) \mod q = 1.$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

- ► $c = (r \circledast h + m) \mod q$.
- $h = (p \circledast g \circledast F_q) \mod q$.

•
$$(F_q \circledast f) \mod q = 1.$$

Equality in

$$(c \circledast f) \mod q \stackrel{?}{=} r \circledast p \circledast g + m \circledast f$$

holds when

$$|r \circledast p \circledast g + m \circledast f|_{\infty} < q/2.$$

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $m' = (v \circledast F_p) \mod p$. Output: m'. Recall:

- $c = (r \circledast h + m) \mod q$.
- $h = (p \circledast g \circledast F_q) \mod q$.

•
$$(F_q \circledast f) \mod q = 1.$$

Equality in

$$(c \circledast f) \mod q \stackrel{?}{=} r \circledast p \circledast g + m \circledast f$$

holds when

$$|r \circledast p \circledast g + m \circledast f|_{\infty} < q/2.$$

Parameters, incl. $\mathcal{L}_f, \mathcal{L}_g, \mathcal{L}_r, \mathcal{L}_m$, are chosen to ensure this usually holds. It is possible to choose parameters for which this always holds.

Arithmetic is still in $R \cong \mathbb{Z}[x]/(x^n - 1)$,

Arithmetic is still in $R \cong \mathbb{Z}[x]/(x^n - 1)$, but now we will pay attention to the fact that

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$$

Arithmetic is still in $R \cong \mathbb{Z}[x]/(x^n - 1)$, but now we will pay attention to the fact that

$$x^{n} - 1 = (x - 1) \underbrace{(x^{n-1} + x^{n-2} + \dots + x + 1)}_{\Phi_{n}}.$$

It will be helpful to define $S \cong \mathbb{Z}[x]/(\Phi_n)$.

Parameters: Prime *n* for which both 2 and 3 generate $(\mathbb{Z}/n)^{\times}$, p = 3, and $q = 2^{\lceil 3.5 + \log n \rceil}$.

Parameters: Prime *n* for which both 2 and 3 generate $(\mathbb{Z}/n)^{\times}$, p = 3, and $q = 2^{\lceil 3.5 + \log n \rceil}$.

Define

$$\mathcal{T} = \{ v \in \{-1, 0, 1\}^n : v_{n-1} = 0 \}$$

and

$$\mathcal{T}_+ = \{ v \in \mathcal{T} : \langle x \circledast v, v \rangle \ge 0 \}.$$

Parameters: Prime *n* for which both 2 and 3 generate $(\mathbb{Z}/n)^{\times}$, p = 3, and $q = 2^{\lceil 3.5 + \log n \rceil}$.

Define

$$\mathcal{T} = \{ v \in \{-1, 0, 1\}^n : v_{n-1} = 0 \}$$

and

$$\mathcal{T}_+ = \{ v \in \mathcal{T} : \langle x \circledast v, v \rangle \ge 0 \}.$$

Sample spaces: $\mathcal{L}_f = \mathcal{L}_g = \mathcal{T}_+$ and $\mathcal{L}_r = \mathcal{L}_m = \mathcal{T}.$

Parameters: Prime *n* for which both 2 and 3 generate $(\mathbb{Z}/n)^{\times}$, p = 3, and $q = 2^{\lceil 3.5 + \log n \rceil}$.

Define

$$\mathcal{T} = \{ v \in \{-1, 0, 1\}^n : v_{n-1} = 0 \}$$

and

$$\mathcal{T}_+ = \{ v \in \mathcal{T} : \langle x \circledast v, v \rangle \ge 0 \}.$$

Sample spaces: $\mathcal{L}_f = \mathcal{L}_g = \mathcal{T}_+$ and $\mathcal{L}_r = \mathcal{L}_m = \mathcal{T}$.

For the experts: We want to do NTRU in $S = \mathbb{Z}[x]/(\Phi_n)$, but we want perfect correctness and small q. The usual decryption algorithm in Scosts us a factor of 2 in q. Better decryption algorithms require analysis of "gap failures" (see: Silverman, NTRU Tech Report #11, 2001). Using \mathcal{T}_+ saves us a factor of $\sqrt{2}$, with little effort.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: (Try to) compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: (Try to) compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.

4: If step 2 or step 3 fails, go to 1.

5:
$$h = (p \circledast (x - 1) \circledast g \circledast F_q) \mod q$$
.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: (Try to) compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: (Try to) compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: If step 2 or step 3 fails, go to 1.
- 5: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: Compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: Compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: Compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: Compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample r from \mathcal{L}_r . 2: $c = (r \circledast h + LiftP(m)) \mod q$. Output: Ciphertext c.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: Compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: Compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample r from \mathcal{L}_r . 2: $c = (r \circledast h + LiftP(m)) \mod q$. Output: Ciphertext c. Where $LiftP(m) = (x - 1) \circledast m_0$ with $m_0 \in \mathcal{T}$ and $LiftP(m) \equiv m \text{ in } S/p.$

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: Compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: Compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample r from \mathcal{L}_r . 2: $c = (r \circledast h + LiftP(m)) \mod q$. Output: Ciphertext c.

Key Generation

- 1: Sample f and g from \mathcal{L}_f and \mathcal{L}_g .
- 2: Compute F_q such that $(f \circledast F_q) \mod q \equiv 1$ in S.
- 3: Compute F_p such that $(f \circledast F_p) \mod p \equiv 1$ in S.
- 4: $h = (p \circledast (x 1) \circledast g \circledast F_q) \mod q$.

Output: Private key (f, F_p) and public key h.

Encryption

Input: Message $m \in \mathcal{L}_m$. 1: Sample r from \mathcal{L}_r . 2: $c = (r \circledast h + LiftP(m)) \mod q$. Output: Ciphertext c.

Decryption

Input: Ciphertext c. 1: $v = (c \circledast f) \mod q$. 2: $u = (u \circledast F_p) \mod p$. 3: $m' = (u - u_{n-1} \cdot \Phi_n) \mod p$. Output: m'

Correctness condition

NTRU-HRSS decryption will succeed if

$$|r \circledast p \circledast (x-1) \circledast g + LiftP(m) \circledast f|_{\infty} < q/2.$$

Correctness condition

NTRU-HRSS decryption will succeed if

$$|r \circledast p \circledast (x-1) \circledast g + LiftP(m) \circledast f|_{\infty} < q/2.$$

The triangle inequality gives:

$$|r \circledast p \circledast (x-1) \circledast g|_{\infty} < 2pn.$$

 $|LiftP(m) \circledast f|_{\infty} < 2n.$

Correctness condition

NTRU-HRSS decryption will succeed if

 $|r \circledast p \circledast (x-1) \circledast g + LiftP(m) \circledast f|_{\infty} < q/2.$

The triangle inequality gives:

$$egin{aligned} |r \circledast p \circledast (x-1) \circledast g|_{\infty} < 2pn, \ |LiftP(m) \circledast f|_{\infty} < 2n. \end{aligned}$$

But we prove that for $f,g\in\mathcal{T}_+$

$$|r \circledast p \circledast (x-1) \circledast g|_{\infty} < \sqrt{2}pn.$$

 $|LiftP(m) \circledast f|_{\infty} < \sqrt{2}n.$

"NTRU in S" decryption will succeed if

$$|r \circledast p \circledast g + m \circledast f - b\Phi_n|_{\infty} < q/2,$$

where *b* is the coefficient of x^{n-1} in $r \circledast p \circledast g + m \circledast f$.

"NTRU in S" decryption will succeed if

$$|r \circledast p \circledast g + m \circledast f - b\Phi_n|_{\infty} < q/2,$$

where *b* is the coefficient of x^{n-1} in $r \circledast p \circledast g + m \circledast f$.

Without knowing more about *b*, success is only guaranteed when

$$|r \circledast p \circledast g + m \circledast f|_{\infty} < q/4.$$

"NTRU in S" decryption will succeed if

$$|r \circledast p \circledast g + m \circledast f - b\Phi_n|_{\infty} < q/2,$$

where *b* is the coefficient of x^{n-1} in $r \circledast p \circledast g + m \circledast f$.

Without knowing more about b, success is only guaranteed when

$$|r \circledast p \circledast g + m \circledast f|_{\infty} < q/4.$$

Known (1996?) workaround: translate by $\delta \Phi_n$ before "mod p".

"NTRU in S" decryption will succeed if

$$|r \circledast p \circledast g + m \circledast f - b\Phi_n|_{\infty} < q/2,$$

where *b* is the coefficient of x^{n-1} in $r \circledast p \circledast g + m \circledast f$.

Without knowing more about b, success is only guaranteed when

$$|r \circledast p \circledast g + m \circledast f|_{\infty} < q/4.$$

Known (1996?) workaround: translate by $\delta \Phi_n$ before "mod p". Open problems:

- Choose δ in constant time.
- Save a factor $\geq \sqrt{2}$ using this approach.

- ▶ NTRU-PKE *n* = 743, *p* = 3, *q* = 2048:
 - fixed weight 494 for f and g,
 - uniform trinary for r and m,
 - expected failure rate 2^{-112} (w.r.t. honest r and m).
- ► SS-NTRU-PKE n = 1024, p = 2, $q = 2^{30} + 2^{13} + 1$:
 - ▶ wide gaussian for *f*, *g*, *r*, and *m*,
 - expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime n = 761, p = 3, q = 4591:
 - ▶ fixed weight 286 for f and r,
 - uniform trinary for g and m.
- ▶ NTRU-HRSS *n* = 701, *p* = 3, *q* = 8192:
 - uniform \mathcal{T}_+ for f and g,
 - uniform trinary for *r* and *m*.

- ▶ NTRU-PKE *n* = 743, *p* = 3, *q* = 2048:
 - ▶ fixed weight 494 for f and g,
 - uniform trinary for r and m,
 - expected failure rate 2^{-112} (w.r.t. honest r and m).
- ► SS-NTRU-PKE n = 1024, p = 2, $q = 2^{30} + 2^{13} + 1$:
 - ▶ wide gaussian for *f*, *g*, *r*, and *m*,
 - expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime n = 761, p = 3, q = 4591:
 - ▶ fixed weight 286 for f and r,
 - uniform trinary for g and m.
- ▶ NTRU-HRSS *n* = 701, *p* = 3, *q* = 8192:
 - uniform \mathcal{T}_+ for f and g,
 - uniform trinary for *r* and *m*.

- ▶ NTRU-PKE *n* = 743, *p* = 3, *q* = 2048:
 - fixed weight 494 for f and g,
 - uniform trinary for r and m,
 - expected failure rate 2^{-112} (w.r.t. honest r and m).
- ► SS-NTRU-PKE n = 1024, p = 2, $q = 2^{30} + 2^{13} + 1$:
 - ▶ wide gaussian for *f*, *g*, *r*, and *m*,
 - expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime n = 761, p = 3, q = 4591:
 - fixed weight 286 for f and r,
 - uniform trinary for g and m.
- ▶ NTRU-HRSS *n* = 701, *p* = 3, *q* = 8192:
 - uniform \mathcal{T}_+ for f and g,
 - uniform trinary for *r* and *m*.

- ▶ NTRU-PKE *n* = 743, *p* = 3, *q* = 2048:
 - fixed weight 494 for f and g,
 - uniform trinary for r and m,
 - expected failure rate 2^{-112} (w.r.t. honest r and m).
- ► SS-NTRU-PKE n = 1024, p = 2, $q = 2^{30} + 2^{13} + 1$:
 - ▶ wide gaussian for *f*, *g*, *r*, and *m*,
 - expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime n = 761, p = 3, q = 4591:
 - ▶ fixed weight 286 for f and r,
 - uniform trinary for g and m.
- ▶ NTRU-HRSS *n* = 701, *p* = 3, *q* = 8192:
 - uniform \mathcal{T}_+ for f and g,
 - uniform trinary for *r* and *m*.

- ▶ NTRU-PKE *n* = 743, *p* = 3, *q* = 2048:
 - fixed weight 494 for f and g,
 - uniform trinary for r and m,
 - expected failure rate 2^{-112} (w.r.t. honest r and m).
- ► SS-NTRU-PKE n = 1024, p = 2, $q = 2^{30} + 2^{13} + 1$:
 - ▶ wide gaussian for *f*, *g*, *r*, and *m*,
 - expected failure rate 2^{-80} (w.r.t. honest r and m).
- Streamlined NTRU Prime n = 761, p = 3, q = 4591:
 - fixed weight 286 for f and r,
 - uniform trinary for g and m.
- ▶ NTRU-HRSS n = 701, p = 3, q = 8192:
 - uniform \mathcal{T}_+ for f and g,
 - uniform trinary for *r* and *m*.

Recall:
$$R \cong \mathbb{Z}[x]/(x^n - 1)$$
 and
 $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$

Recall: $R \cong \mathbb{Z}[x]/(x^n - 1)$ and $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$

So $x \mapsto 1$ is a ring homomorphism $R \to \mathbb{Z}$.

Recall:
$$R \cong \mathbb{Z}[x]/(x^n - 1)$$
 and
 $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$

So $x \mapsto 1$ is a ring homomorphism $R \to \mathbb{Z}$. This implies, e.g.,

$$c(1) = pr(1)h(1) + m(1) \mod q$$

Three solutions:

Control sample spaces.

NTRU-PKE.

Multiply the HPS98 values of h and m by (x - 1).

NTRU-HRSS.

Use a different ring.

- SS-NTRU-PKE.
- NTRU Prime.

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- ▶ Hash *m* to get coins for encryption and a session key.
- Encrypt *m*, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- ▶ Hash *m* to get coins for encryption and a session key.
- Encrypt *m*, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

We use a OWCPA-PKE to CCA-KEM transform due to Dent.

CCA-Encaps:

- Sample $m \in \mathcal{T}$.
- ▶ Hash *m* to get coins for encryption and a session key.
- Encrypt *m*, using the coins to sample $r \in \mathcal{T}$.
- Output ciphertext and session key.

CCA-Decaps: Decrypt, re-encrypt, and compare.

Note: Our submission includes an additional hash for a QROM proof. Accounts for 141 bytes of the ciphertext.

Parameters, security, and performance

We claim n = 701 (q = 8192) meets requirements of security category 1.

	$Cycles^*$		Bytes
Keygen:	294 847	sk:	1422
Encaps:	38 456	pk:	1140
Decaps:	68 458	c:	1140 + 141

* Optimized AVX2 impl. on 3.5 GHz Intel Core i7-4770K CPU.

Recap

Pros:

- No decryption failures.
- Simple CCA transform (no padding mechanism).
- No fixed weight distributions.
- Public keys and ciphertexts map to 0 under $x \mapsto 1$.
- No invertibility checks in key gen.
- ▶ New routines (*LiftP*, sampling from *T*₊) are cheap.

Cons:

- q is a factor of $\sqrt{2}$ larger than in HPS98 (for same correctness).
- Need to compute F_p.