NTS-KEM

M. Albrecht¹, C. Cid¹, K. Paterson¹, CJ Tjhai², M. Tomlinson²

¹Information Security Group & Institute for Cyber Security Innovation, Royal Holloway University of London, Egham, Surrey, UK

²PQ Solutions Ltd,
50 Liverpool Street,
London, UK

NIST First PQC Standardization Conference 13th April 2018

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

NIST 1st PQC Conf.

1 / 12

Introduction

- Code-based cryptography
 - Goppa codes
 - McEliece public-key encryption (PKE)
 - ★ One-wayness (OW) secure
 - Difficult for an attacker to recover the underlying message m for some ciphertext c
- NTS-KEM is a key-encapsulation mechanism (KEM)
 - Mixture of McEliece and Niederreiter schemes combined with a transform akin to Fujisaki-Okamoto or Dent transforms.
 - Resistant against chosen ciphertext attacks (CCA)

Algorithm Summary

- The key-generation, encapsulation and decapsulation algorithms are the same as those of McEliece's scheme (in general)
- The main difference: the shortening of ciphertext
 - Property: the sum of two codewords is another codeword
 - $\blacktriangleright \ \mathbf{e} = (\mathbf{e}_a \mid \mathbf{e}_b \mid \mathbf{e}_c), \text{ where } \mathbf{e}_a \in \mathbb{F}_2^{k-\ell}, \ \mathbf{e}_b \in \mathbb{F}_2^{\ell} \text{ and } \mathbf{e}_c \in \mathbb{F}_2^{n-k}$
 - ▶ On encapsulation, set $\mathbf{m} = (\mathbf{e}_a \mid \mathbf{k}_e) \in \mathbb{F}_2^k$ where $\mathbf{k}_e = H_\ell(\mathbf{e}) \in \mathbb{F}_2^\ell$:

$$\begin{aligned} \mathbf{c} &= (\mathbf{m} \mid \mathbf{m} \cdot \mathbf{Q}) + \mathbf{e} \\ &= (\mathbf{e}_a \mid \mathbf{k}_e \mid (\mathbf{e}_a \mid \mathbf{k}_e) \cdot \mathbf{Q}) + (\mathbf{e}_a \mid \mathbf{e}_b \mid \mathbf{e}_c) \\ &= (\mathbf{0}_a \mid \mathbf{k}_e + \mathbf{e}_b \mid (\mathbf{e}_a \mid \mathbf{k}_e) \cdot \mathbf{Q} + \mathbf{e}_c) \\ &= (\mathbf{0}_a \mid \mathbf{c}_b \mid \mathbf{c}_c) \,. \end{aligned}$$

 Discard a section in the private-key and for syndrome computation in decapsulation

Parameter Sets

Scheme	NIST category	Security target [†]	п	k	d	<i>pk</i> (bytes)	<i>sk</i> (bytes)	<i>ct</i> (bytes)
NTS-KEM (12,64)	1	128	4096	3328	129	319,488	9,216	128
NTS-KEM (13,80)	3	192	8192	7152	161	929,760	17,524	162
NTS-KEM (13,136)	5	256	8192	6424	273	1, 419, 704	19,890	253

[†]All classical security

- 2

Performance Analysis

 CPU cycle counts on AVX2.0 platform (MacBook with Intel[®] CoreTM m3-6Y30 1.1GHz processor, 8GB of RAM)

Parameter	Key-gen	Encap	Decap	
set	(kilocycles)	(kilocycles)	(kilocycles)	
NTS-KEM(12, 64)	18,691	52	177	
NTS-KEM(13, 80)	51,275	178	332	
NTS-KEM(13, 136)	108,501	266	644	

• Approximate memory requirements

Parameter	Key-gen	Encap	Decap
set	(KB)	(KB)	(KB)
NTS-KEM(12, 64)	750	320	23
NTS-KEM(13, 80)	2,070	931	48
NTS-KEM(13, 136)	3,310	1,421	53

NTS-KEM Security: IND-CCA Secure

Theorem

If there exists a (t, ε) -adversary \mathcal{A} winning the IND-CCA game for NTS-KEM, then there exists a $(2 t, \varepsilon - \frac{q_D}{2^\ell})$ -adversary \mathcal{B} against the OW security of the McEliece PKE scheme with same code parameters:

- in the Random Oracle Model; and,
- when the decapsulation algorithm succeeds with probability 1 for all public keys (\mathbf{Q}, τ, ℓ) and all well-formed ciphertexts;

with q_D being the number of queries made by $\mathcal A$ to its decapsulation oracle.

Tight security reduction

- Standard Fujisaki-Okamoto conversion is not tight
- ► HHK17¹ tight conversion may result in larger ciphertext

NTS-KEM Security: Parameter Estimates

• Simplistic Information Set Decoding (ISD) analysis to derive minimum m and τ value pair to reach a target work-factor $N(m, \tau) \approx {n \choose k} / {n-\tau \choose k}$

•
$$m \ge 12, \ \tau \ge 42, \ N(m, \tau) \ge 2^{128}$$

- $m \ge 13$, $\tau \ge 53$, $N(m, \tau) \ge 2^{192}$
- $m \ge 13$, $\tau \ge 90$, $N(m, \tau) \ge 2^{256}$
- Using more recent results of BJMM algorithm², the minimum m and τ pairs are:
 - Work-factor 2¹²⁸: m = 12 and $\tau = 64$, time-complexity³: 2^{158.4}
 - Work-factor 2¹⁹²: m = 13 and $\tau = 80$, time-complexity: 2^{239.9}
 - Work-factor 2²⁵⁶: m = 13 and $\tau = 136$, time-complexity: 2^{305.1}
- The above estimates are conservative

²L. Both and A. May. Optimizing BJMM with Nearest Neighbors: Full Decoding in $2^{21n/2}$ and McEliece Security. The Tenth International Workshop on Coding and Cryptography 2017

³D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision decoding. Advances in Cryptology CRYPTO 2011, pages 743–760, Santa Barbara, CA, USA

NTS-KEM Security: Quantum Attacks

- Best quantum attack: application of Grover's algorithm and quantum random walks to speed up ISD algorithms
- Bernstein⁴ showed that Prange's ISD can be done in about

$$c^{(1/2)n/\log n}$$
 iterations, $c = 1/\left(1 - \frac{k}{n}\right)^{1 - \frac{k}{n}}$

where each iteration requires $O(n^3)$ qubit operations

- Kachigar and Tillich⁵ considered how to speed up some of the more advanced ISD algorithms on quantum computers
 - Small improvement over Bernstein's

⁴ D. J. Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, pages 73–80, 2010.

⁵G. Kachigar and J. Tillich. Quantum Information Set Decoding Algorithms. In Post-Quantum Cryptography -8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, pages 69-89, 2017

Advantages

Strong security guarantee

- Conservative proposal of McEliece and Niederreiter variant, nearly 40 years of attention from cryptographic community
- Tight relationship between IND-CCA security of NTS-KEM and the problem of inverting McEliece PKE scheme
- Simple and well-understood mathematical problem
- Conservative parameter set, likely to offer a reasonable security margin within the aimed security categories
- Long-term post-quantum security
 - Best-case quantum attack offers at best a quadratic speed-up on classical ISD

Advantages (cont'd)

- High-degree of flexibility in the parameter set
 - Easy to consider potential trade-off between performance and security
 - Parameters may be set deliberately low to test any new proposed cryptanalytic technique
- Good long-term keys
 - Deterministic decoding in decapsulation algorithm
- Compact ciphertext size
- Efficient operations

- The size of the public-key
 - May not be an issue for optical networks⁶

⁶Joo Yeon Cho, Implementation of Hybrid Mode Quantum-safe Key Exchange over Optical Communication Systems, The Sixth Code-Based Cryptography Workshop, Florida Atlantic University, Florida, April 5-6, 2018, slides

Thank You

https://nts-kem.io

NTS-KEM

NIST 1st PQC Conf. 12 / 12

- 2

イロト イポト イヨト イヨト