DRS

Diagonal dominant Reduction for lattice-based Signature

Thomas PLANTARD, Arnaud SIPASSEUTH, Cedric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

13 April 2018

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to **parallelepiped** attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to **parallelepiped** attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

Lattice based Digital Signature

- Secret key: **Diagonal Dominant** Basis B = D M of a lattice \mathcal{L}
- Public key: A basis P of the same lattice P = UB
- Signature of a message m: a vector s such that $(m-s) \in \mathcal{L}$ and $\|s\|_{\infty} < D$
- Signature security related to GDD_∞.

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

$$B = \begin{pmatrix} D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\ 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\ \pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\ 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\ \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b \\ \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\ 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\ \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\ \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\ \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D \end{pmatrix}$$

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

- Growing *b* creates a gap between Euclidean Norm and Manhattan Norm
- Cyclic structure to guarantee $\|M\|_{\infty} = \|M\|_{1}$

≣ •**୨**.୧.୦

Public Key

- P = UB with $U = P_{R+1}T_RP_R...T_1P_1$
- With P_i a random permutation matrix and

Public Key

•
$$P = UB$$
 with $U = P_{R+1}T_RP_R...T_1P_1$

• With P_i a random permutation matrix and

$$T_i = egin{pmatrix} A^{\pm 1} & 0 & 0 & 0 \ 0 & A^{\pm 1} & 0 & 0 \ 0 & 0 & A^{\pm 1} & 0 \ 0 & 0 & 0 & A^{\pm 1} \end{pmatrix}$$

with

$$A^{+1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

Public Key

•
$$P = UB$$
 with $U = P_{R+1}T_RP_R...T_1P_1$

• With P_i a random permutation matrix and

$$T_i = egin{pmatrix} A^{\pm 1} & 0 & 0 & 0 \ 0 & A^{\pm 1} & 0 & 0 \ 0 & 0 & A^{\pm 1} & 0 \ 0 & 0 & 0 & A^{\pm 1} \end{pmatrix}$$

with

$$A^{+1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

• U and U^- can been computed efficiently.

• U, U^{-1}, P coefficients are growing regularly during the R step.

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

Vector Reduction

- $w \leftarrow Hash(m)$
- 2 until $\|w\|_{\infty} < D$
 - Find q, r such w = r + qD
 - **2** Compute $w \leftarrow r + qM$

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

Vector Reduction

- $w \leftarrow Hash(m)$
- 2 until $||w||_{\infty} < D$
 - Find q, r such w = r + qD
 - 2 Compute $w \leftarrow r + qM$
 - Efficiency: No needs for large arithmetic.
 - Security: Algorithm termination related to a public parameter D.

Alice Helps Bob

- Alice sends s such that $Hash(m) s \in \mathcal{LP}$.
- Alice sends k such that kP = Hash(m) s
- During signing, Alice extracts q such that q(D M) = Hash(m) s
- Alice compute $k = qU^{-1}$.

Alice Helps Bob

- Alice sends s such that $Hash(m) s \in \mathcal{LP}$.
- Alice sends k such that kP = Hash(m) s
- During signing, Alice extracts q such that q(D M) = Hash(m) s
- Alice compute $k = qU^{-1}$.

Bob checks that

•
$$\|s\|_{\infty} < D$$
,

• and qP = Hash(m) - s.

Best Known Attack

Find the Unique Shortest Vector of the lattice

 $\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$

with $v = (D, 0, \dots, 0)$ and a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \lesssim \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} \|D - M\|_2^{\frac{n}{n+1}}}{\|M\|_2} = \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} (D^2 + N_b b^2 + N_1)^{\frac{n}{2(n+1)}}}{\sqrt{N_b b^2 + N_1}}$$

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$$

with $v = (D, 0, \dots, 0)$ and a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \lesssim \frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}} \|D - M\|_2^{\frac{n}{n+1}}}{\|M\|_2} = \frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}} \left(D^2 + N_b b^2 + N_1\right)^{\frac{n}{2(n+1)}}}{\sqrt{N_b b^2 + N_1}}$$

Conservator Choices

Dimension	N _b	b	N ₁	Δ	R	γ	2^{λ}
912	16	28	432	32	24	$ <rac{1}{4}(1.006)^{d+1}$	2 ¹²⁸
1160	23	25	553	32	24	$ <rac{1}{4}(1.005)^{d+1}$	2 ¹⁹²
1518	33	23	727	32	24	$ < rac{1}{4} (1.004)^{d+1}$	2 ²⁵⁶

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of *b* could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of *b* could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Solutions

- Find which sizes of *b* requires 2^{64} signatures: current attack 2^{17} for b = 28.
- 2 Uses b smaller: if b small, dimension increases by 20% to 30%.

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

Disadvantage

- Quadratic structure is memory costly.
- Verfication still slower than signing.

Odd Manhattan

Thomas PLANTARD

Institute of Cybersecurity and Cryptology University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

13 April 2018

plantard (uow)

Odd Manhattan

13 April 2018 1 / 10

1 Description

- 2 Security Analysis
- Implementation Details

4 Comments

5 Specificity

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

Lattice based Key Encryption Message

- Encrypt a message *m* in the **parity bit** of a vector close to the lattice.
- CCA achived using classic method i.e. Dent's.

Public Key Encryption

Setup

- Alice choose 3 public parameters
 - d a lattice dimension,
 - 2 b an upper bound,
 - *p* a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.
 - with w_i odd,
 - 2 with $\sum_{i=1}^{d} |w_i|$ bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$
- Alice publish the Lattice \mathcal{L} such that $w \in \mathcal{L}^*$.

Public Key Encryption

Setup

- Alice choose 3 public parameters
 - d a lattice dimension,
 - 2 b an upper bound,
 - *p* a prime number.

• Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.

with w_i odd,

2) with
$$\sum_{i=1}^d |w_i|$$
 bounded by $I = \lfloor rac{p-1}{2b} \rfloor$

• Alice publish the Lattice \mathcal{L} such that $w \in \mathcal{L}^*$.

${\sf Encryption}/{\sf Decryption}$

Theorem

Let \mathcal{L} a full rank lattice of determinant p > 2 prime and dimension d > 1, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$\mathcal{P}_{p,d,l} = \left(1 - rac{1}{p^{d-1}}
ight)^{2^{d-1}\left(\left\lfloorrac{\lfloorrac{l+d}{2}
ight
ceil}{d}
ight)}$$

Theorem

Let \mathcal{L} a full rank lattice of determinant p > 2 prime and dimension d > 1, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$\mathcal{P}_{p,d,l} = \left(1 - rac{1}{p^{d-1}}
ight)^{2^{d-1}\left(igslel{rac{l+d}{2}}{d}igslel{l}
ight)}$$

Cryptosystem Parameters

By taking $p \approx 2^{d+1}b^d(d)!$, we insure that $\mathcal{P}_{p,d,\frac{p-1}{2b}} < \frac{1}{2}$ i.e. the set of **all possible public key** represents more than **half** of the set of **all generic lattices** with equivalent dimension and determinant.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Theorem $(BDD_{\frac{\alpha}{4}} \leq BDPC_{\alpha})$

For any l_p -norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Theorem $(BDD_{\frac{\alpha}{4}} \leq BDPC_{\alpha})$

For any l_p -norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.

Extracting message is as hard as...

1 BDD
$$_{\alpha}$$
 with $\alpha = \frac{1}{o(d)}$ for I_{∞} -norm,

②
$$\mathsf{USVP}_\gamma$$
 with $\gamma = o(d)$ for $I_\infty-$ norm,

3 GapSVP
$$_{\gamma}$$
 with $\gamma = o(\frac{d^2}{\log d})$ for I_{∞} -norm,

• GapSVP
$$_{\gamma}$$
 with $\gamma = o(rac{d^2}{\log d})$ for l_2 -norm.

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$$

with a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}$$

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$$

with a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}$$

Conservator Choices

Dimension	Bound	Determinant	$\mathcal{P}_{p,d,\frac{p-1}{2b}}$	Gap	2^{λ}
1156 1429 1850	1 1 1	$\begin{array}{r} 2^{11258}-4217\\ 2^{14353}-15169\\ 2^{19268}-7973\end{array}$	$ \begin{array}{c} \lesssim 0.336 \\ \lesssim 0.137 \\ \lesssim 0.218 \end{array} $	$ < rac{1}{4} (1.006)^{d+1} \ < rac{1}{4} (1.005)^{d+1} \ < rac{1}{4} (1.004)^{d+1}$	2^{128} 2^{192} 2^{256}

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message m = 0, 1.
- Optimisation to **share** some **common computation** while encrypting.

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message m = 0, 1.
- Optimisation to share some common computation while encrypting.

Pseudo Mersenne

Using $p = 2^n - c$, to accelerate **modular reduction**.

Tancrede Lepoint

- Implementation issue regarding CCA security.
- Shared secret was not randomised when return decryption failure.

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Specificity

- Secret key is composed by only one **Odd** vector of bounded **Manhattan** Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $BDD_{\frac{1}{o(d)}}$ for I_{∞} -norm i.e. max norm.
- No decryption error.
- Simplicity.

Specificity

- Secret key is composed by only one **Odd** vector of bounded **Manhattan** Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $BDD_{\frac{1}{o(d)}}$ for I_{∞} -norm i.e. max norm.
- No decryption error.
- Simplicity.

Disadvantage

Keys and Ciphertext size.

plantard (uow)

13 April 2018 10 / 10