DRS

Diagonal dominant Reduction for lattice-based Signature

Thomas PLANTARD, Arnaud SIPASSEUTH, Cedric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology
University of Wollongong

$$
\begin{aligned}
& \text { http://www.uow.edu.au/-thomaspl } \\
& \text { thomaspl@uow.edu.au }
\end{aligned}
$$

13 April 2018

Outline

(1) Description
(2) Security Analysis
(3) Comments
(4) Specificity

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to parallelepiped attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to parallelepiped attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

Lattice based Digital Signature

- Secret key: Diagonal Dominant Basis $B=D-M$ of a lattice \mathcal{L}
- Public key: A basis P of the same lattice $P=U B$
- Signature of a message m : a vector s such that $(m-s) \in \mathcal{L}$ and $\|s\|_{\infty}<D$
- Signature security related to $G D D_{\infty}$.

Secret Key

- A diagonal Dominant Basis with $N_{b} \pm b$ and $N_{1} \pm 1$.
- With a cyclic structure but for the signs.

Secret Key

- A diagonal Dominant Basis with $N_{b} \pm b$ and $N_{1} \pm 1$.
- With a cyclic structure but for the signs.

$$
B=\left(\begin{array}{cccccccccc}
D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\
0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\
\pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\
0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\
\pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b \\
\pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\
0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\
\pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 \\
\pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\
\pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D
\end{array}\right)
$$

Secret Key

- A diagonal Dominant Basis with $N_{b} \pm b$ and $N_{1} \pm 1$.
- With a cyclic structure but for the signs.

$$
B=\left(\begin{array}{cccccccccc}
D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\
0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\
\pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\
0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\
\pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b \\
\pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\
0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\
\pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 \\
\pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\
\pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D
\end{array}\right)
$$

- Growing b creates a gap between Euclidean Norm and Manhattan Norm
- Cyclic structure to guarantee $\|M\|_{\infty}=\|M\|_{1}$

Public Key

- $P=U B$ with $U=P_{R+1} T_{R} P_{R} \ldots T_{1} P_{1}$
- With P_{i} a random permutation matrix and

Public Key

- $P=U B$ with $U=P_{R+1} T_{R} P_{R} \ldots T_{1} P_{1}$
- With P_{i} a random permutation matrix and

$$
T_{i}=\left(\begin{array}{cccc}
A^{ \pm 1} & 0 & 0 & 0 \\
0 & A^{ \pm 1} & 0 & 0 \\
0 & 0 & A^{ \pm 1} & 0 \\
0 & 0 & 0 & A^{ \pm 1}
\end{array}\right)
$$

with

$$
A^{+1}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right), A^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right)
$$

Public Key

- $P=U B$ with $U=P_{R+1} T_{R} P_{R} \ldots T_{1} P_{1}$
- With P_{i} a random permutation matrix and

$$
T_{i}=\left(\begin{array}{cccc}
A^{ \pm 1} & 0 & 0 & 0 \\
0 & A^{ \pm 1} & 0 & 0 \\
0 & 0 & A^{ \pm 1} & 0 \\
0 & 0 & 0 & A^{ \pm 1}
\end{array}\right)
$$

with

$$
A^{+1}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right), A^{-1}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right)
$$

- U and U^{-}can been computed efficiently.
- U, U^{-1}, P coefficients are growing regularly during the R step.

Signing

- As $B=D-M$, we have $D \equiv M(\bmod \mathcal{L})$
- $\|M\|_{1}<D$ to guarantee short number of steps.

Signing

- As $B=D-M$, we have $D \equiv M(\bmod \mathcal{L})$
- $\|M\|_{1}<D$ to guarantee short number of steps.

Vector Reduction

(1) $w \leftarrow \operatorname{Hash}(m)$
(2) until $\|w\|_{\infty}<D$
(1) Find q, r such $w=r+q D$
(2) Compute $w \leftarrow r+q M$

Signing

- As $B=D-M$, we have $D \equiv M(\bmod \mathcal{L})$
- $\|M\|_{1}<D$ to guarantee short number of steps.

Vector Reduction

(1) $w \leftarrow \operatorname{Hash}(m)$
(2) until $\|w\|_{\infty}<D$
(1) Find q, r such $w=r+q D$
(2) Compute $w \leftarrow r+q M$

- Efficiency: No needs for large arithmetic.
- Security: Algorithm termination related to a public parameter D.

Signature Verfication

Alice Helps Bob

- Alice sends s such that $\operatorname{Hash}(m)-s \in \mathcal{L} P$.
- Alice sends k such that $k P=\operatorname{Hash}(m)-s$
- During signing, Alice extracts q such that $q(D-M)=\operatorname{Hash}(m)-s$
- Alice compute $k=q U^{-1}$.

Signature Verfication

Alice Helps Bob

- Alice sends s such that $\operatorname{Hash}(m)-s \in \mathcal{L} P$.
- Alice sends k such that $k P=\operatorname{Hash}(m)-s$
- During signing, Alice extracts q such that $q(D-M)=\operatorname{Hash}(m)-s$
- Alice compute $k=q U^{-1}$.

Bob checks that

- $\|s\|_{\infty}<D$,
- and $q P=\operatorname{Hash}(m)-s$.

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\left(\begin{array}{ll}
v & 1 \\
P & 0
\end{array}\right)
$$

with $v=(D, 0, \ldots, 0)$ and a lattice gap

$$
\gamma=\frac{\lambda_{2}}{\lambda_{1}} \lesssim \frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}}\|D-M\|_{2}^{\frac{n}{n+1}}}{\|M\|_{2}}=\frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}}\left(D^{2}+N_{b} b^{2}+N_{1}\right)^{\frac{n}{2(n+1)}}}{\sqrt{N_{b} b^{2}+N_{1}}}
$$

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\left(\begin{array}{ll}
v & 1 \\
P & 0
\end{array}\right)
$$

with $v=(D, 0, \ldots, 0)$ and a lattice gap

$$
\gamma=\frac{\lambda_{2}}{\lambda_{1}} \lesssim \frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}}\|D-M\|_{2}^{\frac{n}{n+1}}}{\|M\|_{2}}=\frac{\Gamma\left(\frac{n+3}{2}\right)^{\frac{1}{n+1}}\left(D^{2}+N_{b} b^{2}+N_{1}\right)^{\frac{n}{2(n+1)}}}{\sqrt{N_{b} b^{2}+N_{1}}}
$$

Conservator Choices

Dimension	N_{b}	b	N_{1}	Δ	R	γ	2^{λ}
912	16	28	432	32	24	$<\frac{1}{4}(1.006)^{d+1}$	2^{128}
1160	23	25	553	32	24	$<\frac{1}{4}(1.005)^{d+1}$	2^{192}
1518	33	23	727	32	24	$<\frac{1}{4}(1.004)^{d+1}$	2^{256}

Comments

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of b could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Comments

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of b could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Solutions

(1) Find which sizes of b requires 2^{64} signatures: current attack 2^{17} for $b=28$.
(2) Uses b smaller: if b small, dimension increases by 20% to 30%.

Specificity

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Specificity

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

Specificity

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

Disadvantage

- Quadratic structure is memory costly.
- Verfication still slower than signing.

Odd Manhattan

Thomas PLANTARD

Institute of Cybersecurity and Cryptology University of Wollongong

http://www.uow.edu.au/ thomaspl
thomaspl@uow.edu.au

13 April 2018

Outline

(1) Description
(2) Security Analysis
(3) Implementation Details
(4) Comments
(5) Specificity

General Description

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

General Description

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

Lattice based Key Encryption Message

- Encrypt a message m in the parity bit of a vector close to the lattice.
- CCA achived using classic method i.e. Dent's.

Public Key Encryption

Setup

- Alice choose 3 public parameters
(1) d a lattice dimension,
(2) b an upper bound,
(3) p a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d, l}$ i.e.
(1) with w_{i} odd,
(2) with $\sum_{i=1}^{d}\left|w_{i}\right|$ bounded by $I=\left\lfloor\frac{p-1}{2 b}\right\rfloor$
- Alice publish the Lattice \mathcal{L} such that $w \in \mathcal{L}^{*}$.

Public Key Encryption

Setup

- Alice choose 3 public parameters
(1) d a lattice dimension,
(2) b an upper bound,
(3) p a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d, l}$ i.e.
(1) with w_{i} odd,
(2) with $\sum_{i=1}^{d}\left|w_{i}\right|$ bounded by $I=\left\lfloor\frac{p-1}{2 b}\right\rfloor$
- Alice publish the Lattice \mathcal{L} such that $w \in \mathcal{L}^{*}$.

Encryption/Decryption

- To encrypt $m \in\{0,1\}$, Bob computes v such $\exists u$
(1) $(v-u) \in \mathcal{L}$
(2) $\|u\|_{\infty} \leq b$
(3) $\sum_{i=1}^{d} u_{i} \bmod 2=m$
- To decrypt, Alice extract $m=\left(v w^{t} \bmod p\right) \bmod 2$.

Probability that a random lattice could be a public key

Theorem

Let \mathcal{L} a full rank lattice of determinant $p>2$ prime and dimension $d>1$, and $I \in \mathbb{N}^{*}$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^{*} \cap \mathcal{M}_{d, I}=\varnothing$ is given by

$$
\mathcal{P}_{p, d, l}=\left(1-\frac{1}{p^{d-1}}\right)^{2^{d-1}\left(\begin{array}{|c|c|}
\left.\frac{\lfloor }{2}\right\rfloor
\end{array}\right)}
$$

Probability that a random lattice could be a public key

Theorem

Let \mathcal{L} a full rank lattice of determinant $p>2$ prime and dimension $d>1$, and $I \in \mathbb{N}^{*}$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^{*} \cap \mathcal{M}_{d, I}=\varnothing$ is given by

$$
\mathcal{P}_{p, d, l}=\left(1-\frac{1}{p^{d-1}}\right)^{2^{d-1}\left(\begin{array}{|c|c|}
\left.\frac{\lfloor }{2}\right\rfloor
\end{array}\right)}
$$

Cryptosystem Parameters

By taking $p \approx 2^{d+1} b^{d}(d)!$, we insure that $\mathcal{P}_{p, d, \frac{p-1}{2 b}}<\frac{1}{2}$ i.e.
the set of all possible public key represents more than half of the set of all generic lattices with equivalent dimension and determinant.

Computational Hardness for message security

Definition (α-Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u,(v-u) \in \mathcal{L},\|u\|<\alpha \lambda_{1}(\mathcal{L})$, find $\sum_{i=1}^{d} u_{i} \bmod 2$.

Computational Hardness for message security

Definition (α-Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u,(v-u) \in \mathcal{L},\|u\|<\alpha \lambda_{1}(\mathcal{L})$, find $\sum_{i=1}^{d} u_{i} \bmod 2$.

Theorem $\left(B D D_{\frac{\alpha}{4}} \leq B D P C_{\alpha}\right)$

For any I_{p}-norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $B D D_{\frac{\alpha}{4}}$ to $B D P C_{\alpha}$.

Computational Hardness for message security

Definition (α-Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u,(v-u) \in \mathcal{L},\|u\|<\alpha \lambda_{1}(\mathcal{L})$, find $\sum_{i=1}^{d} u_{i} \bmod 2$.

Theorem $\left(B D D_{\frac{\alpha}{4}} \leq B D P C_{\alpha}\right)$

For any I_{p}-norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $B D D_{\frac{\alpha}{4}}$ to $B D P C_{\alpha}$.

Extracting message is as hard as...

(1) BDD_{α} with $\alpha=\frac{1}{o(d)}$ for I_{∞}-norm,
(2) USVP ${ }_{\gamma}$ with $\gamma=o(d)$ for l_{∞}-norm,
(3) GapSVP ${ }_{\gamma}$ with $\gamma=o\left(\frac{d^{2}}{\log d}\right)$ for $I_{\infty}-$ norm,
(9) GapSVP γ with $\gamma=o\left(\frac{d^{2}}{\log d}\right)$ for $I_{2}-$ norm.

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\left(\begin{array}{ll}
v & 1 \\
P & 0
\end{array}\right)
$$

with a lattice gap

$$
\gamma=\frac{\lambda_{2}}{\lambda_{1}} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1) b}{2 b+1}}}
$$

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\left(\begin{array}{ll}
v & 1 \\
P & 0
\end{array}\right)
$$

with a lattice gap

$$
\gamma=\frac{\lambda_{2}}{\lambda_{1}} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1) b}{2 b+1}}}
$$

Conservator Choices

Dimension	Bound	Determinant	$\mathcal{P}_{p, d, \frac{p-1}{2 b}}$	Gap	2^{λ}
1156	1	$2^{11258}-4217$	$\lesssim 0.336$	$<\frac{1}{4}(1.006)^{d+1}$	2^{128}
1429	1	$2^{14353}-15169$	$\lesssim 0.137$	$<\frac{1}{4}(1.005)^{d+1}$	2^{192}
1850	1	$2^{19268}-7973$	$\lesssim 0.218$	$<\frac{1}{4}(1.004)^{d+1}$	2^{256}

Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m=0,1$.
- Optimisation to share some common computation while encrypting.

Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m=0,1$.
- Optimisation to share some common computation while encrypting.

Pseudo Mersenne

Using $p=2^{n}-c$, to accelerate modular reduction.

Comment

Tancrede Lepoint

- Implementation issue regarding CCA security.
- Shared secret was not randomised when return decryption failure.

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as BDD $\frac{1}{\frac{1}{o(d)}}$ for I_{∞}-norm i.e. max norm.
- No decryption error.
- Simplicity.

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as BDD $\frac{1}{\frac{1}{o(d)}}$ for I_{∞}-norm i.e. max norm.
- No decryption error.
- Simplicity.

Disadvantage

- Keys and Ciphertext size.

