OUROBOROS-R, an IND-CPA KEM based on Rank Metric NIST First Post-Quantum Cryptography Standardization Conference

Carlos AguilarMelchor² Nicolas Aragon¹ Slim Bettaieb⁵ Loic Bidoux⁵ Olivier Blazy¹ Jean-Christophe Deneuville^{1,4} **Philippe Gaborit**¹ Adrien Hauteville¹ Gilles Zémor³

¹University of Limoges, XLIM-DMI, France ; ²ISAE-SUPAERO, Toulouse, France

³IMB, University of Bordeaux; ⁴INSA-CVL, Bourges, France ; ⁵Worldline, France.

1 Presentation of the rank metric

2 Description of the scheme

3 Security and parameters

Rank Metric

We only consider codes with coefficients in \mathbb{F}_{q^m} . Let β_1, \ldots, β_m be a basis of $\mathbb{F}_{q^m}/\mathbb{F}_q$. To each vector $\mathbf{x} \in \mathbb{F}_{q^m}^n$ we can associate a matrix $\mathbf{M}_{\mathbf{x}}$

$$\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n \leftrightarrow \boldsymbol{M}_{\boldsymbol{x}} = \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mn} \end{pmatrix} \in \mathbb{F}_q^{m \times n}$$

such that $x_j = \sum_{i=1}^m x_{ij}\beta_i$ for each $j \in [1..n]$.

Definition

$$d_R(\mathbf{x}, \mathbf{y}) = \operatorname{Rank}(\mathbf{M}_{\mathbf{x}} - \mathbf{M}_{\mathbf{y}}) \text{ and } |\mathbf{x}|_r = \operatorname{Rank} \mathbf{M}_{\mathbf{x}}.$$

Support of a Word

Definition

The support of a word is the \mathbb{F}_q -subspace generated by its coordinates:

$$\mathsf{Supp}(\mathbf{x}) = \langle x_1, \dots, x_n \rangle_{\mathbb{F}_q}$$

Number of supports of weight w:

RankHamming
$$\begin{bmatrix} m \\ w \end{bmatrix}_q \approx q^{w(m-w)}$$
 $\begin{pmatrix} n \\ w \end{pmatrix} \leqslant 2^n$

Complexity in the worst case:

- quadratically exponential for Rank Metric
- simply exponential for Hamming Metric

LRPC Codes

Definition

Let $\boldsymbol{H} \in \mathbb{F}_{q^m}^{(n-k) \times n}$ a full-rank matrix such that the dimension d of $\langle h_{ij} \rangle_{\mathbb{F}_q}$ is small. By definition, \boldsymbol{H} is a parity-check matrix of an $[n, k]_{q^m}$ LRPC code. We say that d is the weight of the matrix \boldsymbol{H} .

A LRPC code can decode errors (recover support) of weight $r \leq \frac{n-k}{d}$ in polynomial time with a probability of failure

$$p_f < \max\left(q^{-(n-k-2(r+d)+5)}, q^{-2(n-k-rd+2)}\right)$$

 \rightarrow matrices based on random small weight codewords with same support can be turned into a decoding algorithm !

Difficult problems in rank metric

Problem (Rank Syndrome Decoding problem)

Given $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_{q^m}^{n-k}$ and an integer r, find $\mathbf{e} \in \mathbb{F}_{q^m}^n$ such that:

•
$$He^{T} = s^{T}$$

• $|e|_{r} = r$

Probabilistic reduction to the NP-Complete SD problem [Gaborit-Zémor, IEEE-IT 2016].

1 Presentation of the rank metric

2 Description of the scheme

3 Security and parameters

OUROBOROS-R scheme

Vectors x of $\mathbb{F}_{q^m}^n$ seen as elements of $\mathbb{F}_{q^m}[X]/(P)$ for some polynomial P.

Alice	Bob				
$seed_{h} \leftarrow \{0, 1\}^{\lambda}, h \stackrel{seed_{h}}{\leftarrow} \mathbb{F}_{q^{m}}^{n}$ $(\mathbf{x}, \mathbf{y}) \leftarrow \mathcal{S}_{1, w}^{2n}(\mathbb{F}_{q^{m}}), \mathbf{s} \leftarrow \mathbf{x} + \mathbf{h}\mathbf{y}$ $\mathbf{F} \leftarrow \text{Supp}(\mathbf{x}, \mathbf{y})$ $e_{c} \leftarrow s_{e} - \mathbf{y}s_{r}$ $\mathbf{F} \leftarrow \text{OCPS} \text{Paccover}(\mathbf{F}, \mathbf{e}, \mathbf{w})$	$\xrightarrow{h,s} \rightarrow \\ \xleftarrow{s_{r},s_{e}}$	$\begin{array}{l} (\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}_r) \leftarrow \mathcal{S}^{3n}_{w_r}(\mathbb{F}_{q^m}) \\ \mathbf{E} \leftarrow Supp\left(\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}_r\right) \\ \mathbf{s}_r \leftarrow \mathbf{r}_1 + \mathbf{hr}_2, \mathbf{s}_e \leftarrow \mathbf{sr}_2 + \mathbf{e}_r \end{array}$			
Hash(E)	Shared Secret	Hash (E)			

Figure 1: Informal description of OUROBOROS-R. **h** and **s** constitute the public key. **h** can be recovered by publishing only the λ bits of the seed (instead of the *n* coordinates of **h**).

Why does it work ?

$$\begin{split} \mathbf{e_c} &= \mathbf{s_e} - \mathbf{y}\mathbf{s_r} = \mathbf{s}\mathbf{r}_2 + \mathbf{e_r} - \mathbf{y}(\mathbf{r}_1 + \mathbf{h}\mathbf{r}_2) \\ &= (\mathbf{x} + \mathbf{h}\mathbf{y})\mathbf{r}_2 + \mathbf{e_r} - \mathbf{y}(\mathbf{r}_1 + \mathbf{h}\mathbf{r}_2) = \mathbf{x}\mathbf{r}_2 - \mathbf{y}\mathbf{r}_1 + \mathbf{e_r} \end{split}$$

 $1 \in F$, coordinates of e_c generate a subspace of $Supp(r_1, r_2, e_r) \times Supp(x, y)$ on which one can apply the QCRS-Recover algorithm to recover E (LRPC decoder).

In other words: e_c seen as syndrome associated to an LRPC code based on the secret key (x, y) \rightarrow a reasonable decoding algorithm is used to decode a SMALL weight error ! **1** Presentation of the rank metric

2 Description of the scheme

3 Security and parameters

Semantic Security

Theorem

Under the assumption of the hardness of the [2n, n]-Decisional-QCRSD and [3n, n]-Decisional-QCRSD problems, OUROBOROS-R is IND-CPA in the Random Oracle Model.

Best Known Attacks

 Combinatorial attacks: try to guess the support of the error or of the codeword. The best algorithm is GRS+(Aragon et al. ISIT 2018). On average:

$$\mathcal{O}\left((nm)^{3}q^{r\left\lceil\frac{km}{n}\right\rceil-m}\right)$$

■ Quantum Speed Up : Grover's algorithm directly applies to GRS+ ⇒ exponent divided by 2.

Examples of parameters

All the times are given in ms, performed on an Intel Core i7-4700HQ CPU running at 3.40GHz.

Security	Key	Ciphertext	KeyGen	Encap	Decap	Probability
	Size (bits)	Size (bits)	Time(ms)	Time(ms)	Time(ms)	of failure
128	5,408	10,816	0.18	0.29	0.53	$< 2^{-36}$
192	6,456	12,912	0.19	0.33	0.97	$< 2^{-36}$
256	8,896	17,792	0.24	0.40	1.38	$< 2^{-42}$

Advantages and Limitations

Advantages:

- Small key size
- Very fast encryption/decryption time
- Reduction to decoding a random (QC) code.
- Well understood decryption failure probability

Limitations:

- Longer ciphertext (compared to LRPC) because of reconciliation (×2).
- Slighlty larger parameters because of security reduction compared to LRPC.
- RSD problem studied since 27 years.

Questions !