

Practical Threshold Cryptography for Cloud and Cryptocurrencies Jakob I. Pagter

From sugar beets to Threshold Cryptography

The landscape for Threshold Cryptography (TC)

Incumbents

- HSM Hardware Security Modules
 - E.g. Thales, Utimaco
- TEE Trusted Execution Environments
 - E.g. SGX
- CSP offered KMS
 - E.g. AWS KMS

Building blocks

- MPC protocols
 - AES
 - ECDSA
 - General
- MPC frameworks for general MPC
 - libscapi
 - EMP toolkit
 - 0

Sepior KMaaS (Key Management as-a-Service)

Core contributions

- Example architecture for TC-based KMaaS
- TC-friendly stream-cipher
- Experiences with commercialization

Design philosophy

- Easy integration [Developer]
- Simple administration [Security Officer]
- Transparent [End-user]

Challenges in cloud encryption

Security perspective (*-YOK)

Usage of key

Storage of key

Randomness

Business perspective

TC-based KMaaS

TC-friendly stream cipher

Architecture

Experiences

Positives

- 👍 People "get it"
- 👍 Ease-of-use
- 👍 Price

Negatives

- Lack of standards
- Lack of certification

Sepior ThresholdSig

Core contributions

- ECDSA protocols in TC-setting
- Architectures for deployment
- Additional relevant features

Design philosophy

- Flexible components
- Simple deployment
- "Forget you have a hammer"

Challenges in cryptocurrency (wallet) security

MultiSig not enough

- Privacy
- Transaction cost
- Flexibility

See e.g. Gennaro et al. (eprint.iacr.org/2016/013.pdf).

Or,

• Onchain vs. off-chain

TC-based ECDSA solution

Cipher(s)

- (t/n)-ECDSA ciphers
 - Honest and dishonest
 - Active security
 - Based on security of ECDSA
- 1500 signatures/second on with each party running one server
- Allow abort
 - Manual intervention if need be
- Use preprocessing
 - (time above includes time for preprocessing)

Architecture

Positives

- Good alignment with decentral trust model
- Much untapped potential

Negatives

- Many cryptocurrencies use ciphers which are not TC-friendly
- General lack of awareness of TC potential

Thank You!

