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Background

What is it?

Encryption-based Key Encapsulation Mechanism:

Takes as input a public key and a secret seed.
Derives and “encapsulates” an ephemeral symmetric key K .
K can be recovered from the ciphertext by using the secret key
matching the public key used above.
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Background

What is it based on?

McEliece Encryption Scheme:

Encrypted messages are of the form: mG � e,
where, m is the message, e is an error vector, and G is the
public-key.

Using Quasi-Cyclic Moderate Density Parity Check codes.

n - codeword length
2k - cardinality of the code family
k, and r = k = n/2 - dimension and co-dimension
w 2 O(

p
n log(n)) - weight of the rows of the parity-check

matrix H
t - the error-correction threshold
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Key Generation 

Algorithm 1 QCMDPC.KeyGen 

Input: Security parameter n = 2r , weight w , and co-dimension r . 
Output: Public key G , secret key H. 

$1: Select h0, h1 − {0, 1}r , each of odd weight w/2. 
2: Compute H0, H1 2 Fr

2 
×r by right circular shifts of h0 and h1. 

3: Set H = [H0|H1] 2 Fr ×n .2 
4: Calculate Q = (H−1H0)T 

1 
5: Set G = [Ik |Q]. 
6: return (G , H). 
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To recover m, a decoding algorithm is required.
The choice of decoder does not a�ect
interoperability/functionality.
However, for security reasons, the decoding algorithm must be
constant time, and preferably with as low of a decoding failure
rate (DFR) as possible.

Decoding Algorithms 

Recall that an encrypted message is of the form: 

c = mG � e. 

Philip Lafrance QC-MDPC KEM 



The choice of decoder does not a�ect
interoperability/functionality.
However, for security reasons, the decoding algorithm must be
constant time, and preferably with as low of a decoding failure
rate (DFR) as possible.

Decoding Algorithms 

Recall that an encrypted message is of the form: 

c = mG � e. 

To recover m, a decoding algorithm is required. 

Philip Lafrance QC-MDPC KEM 



However, for security reasons, the decoding algorithm must be
constant time, and preferably with as low of a decoding failure
rate (DFR) as possible.

Decoding Algorithms 

Recall that an encrypted message is of the form: 

c = mG � e. 

To recover m, a decoding algorithm is required. 
The choice of decoder does not a�ect 
interoperability/functionality. 

Philip Lafrance QC-MDPC KEM 



Decoding Algorithms 

Recall that an encrypted message is of the form: 

c = mG � e. 

To recover m, a decoding algorithm is required. 
The choice of decoder does not a�ect 
interoperability/functionality. 
However, for security reasons, the decoding algorithm must be 
constant time, and preferably with as low of a decoding failure 
rate (DFR) as possible. 

Philip Lafrance QC-MDPC KEM 



� : {0, 1}� ! {0, 1}n – an eÿcient, deterministic,
pseudorandom, one-way function with weight t outputs.
KDF1 : {0, 1}� ! {0, 1}k , and
KDF2 : {0, 1}� ! {0, 1}256+` – where ` is the desired key
length.

Encapsulation 

We require an error vector derivation function, as well as two key 
derivation functions. 
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Encapsulation 

Algorithm 2 QCMDPC.Encap 

Input: Public key G , and random seed s 2 Fk
2 . 

Output: Symmetric key K 2 {0, 1}m 

Output: Ciphertext C = (C1, C2) 2 F256
2 × F` 

2. 
1: e �(s) . Compute n-bit error vector 
2: y KDF1(e) . Compute k-bit masking value 
3: x s � y . Obtain k-bit plain text 
4: C1 xG � e . Encrypt x with e 
5: C2||K KDF2(s) 
6: return (K , C = (C1, C2)) 
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Decapsulation 

Algorithm 3 QCMDPC.Decap 

Input: Secret key H, ciphertext (C1, C2) 2 F256×F` 
2, and dimension 2 

k. 
Output: Symmetric key K 2 {0, 1}` or a decapsulation failure ?. 

1: ((x , e), derr) QCMDPC.Decrypt(H, C1). 
2: y KDF1(e) 
3: s x � y 
4: e0 �(s). 
5: C2

0 ||K KDF2(s). 
6: if e0 = e and C2

0 = C2 and derr = False then 
7: return K 
8: else 
9: return ? 

10: end if 
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State-of-the-art key distinguishing, key recovery, and decoding
attacks.

ISD,
Prange + Grover, MMT + Quantum Walks (QISD),

GJS
IND-CPA reduction

Security 

What attacks were considered? 
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Parameters 

Security 

Classical Quantum n r w t 

80 58 9602 4801 90 84 
128 86 19714 9857 142 134 
256 154 65542 32771 274 264 

Table: Parameter sets for classical and quantum security1. 

1Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. 
Barreto. MDPC-McEliece: New McEliece Variants from Moderate Density 
Parity-Check Codes, 2012. Cryptology ePrint Archive, Report 2012/409. 
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Parameters 

Using the (65542, 32771, 274, 264) parameter set: 

Security 

Classical Quantum Public key Private Key Ciphertext 

256 154 4097 548 8226 

Table: Data sizes in bytes. 
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Thank You. 
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