QC-MDPC KEM

Philip Lafrance

ISARA Corporation <philip.lafrance@isara.com>

April 13, 2018

• Encryption-based Key Encapsulation Mechanism:

- Encryption-based Key Encapsulation Mechanism:
 - Takes as input a public key and a secret seed.

- Encryption-based Key Encapsulation Mechanism:
 - Takes as input a public key and a secret seed.
 - Derives and "encapsulates" an ephemeral symmetric key K.

- Encryption-based Key Encapsulation Mechanism:
 - Takes as input a public key and a secret seed.
 - Derives and "encapsulates" an ephemeral symmetric key K.
 - *K* can be recovered from the ciphertext by using the secret key matching the public key used above.

• McEliece Encryption Scheme:

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.
 - n codeword length

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.
 - *n* codeword length
 - 2^k cardinality of the code family

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.
 - *n* codeword length
 - 2^k cardinality of the code family
 - k, and r = k = n/2 dimension and co-dimension

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.
 - *n* codeword length
 - 2^k cardinality of the code family
 - k, and r = k = n/2 dimension and co-dimension
 - $w \in \mathcal{O}(\sqrt{n \log(n)})$ weight of the rows of the parity-check matrix H

- McEliece Encryption Scheme:
 - Encrypted messages are of the form: $mG \oplus e$,
 - where, *m* is the message, *e* is an error vector, and *G* is the public-key.
- Using Quasi-Cyclic Moderate Density Parity Check codes.
 - *n* codeword length
 - 2^k cardinality of the code family
 - k, and r = k = n/2 dimension and co-dimension
 - $w \in \mathcal{O}(\sqrt{n \log(n)})$ weight of the rows of the parity-check matrix H
 - *t* the error-correction threshold

Algorithm 1 QCMDPC.KeyGen

Input: Security parameter n = 2r, weight w, and co-dimension r. **Output:** Public key G, secret key H.

- 1: Select $h_0, h_1 \stackrel{\$}{=} \{0, 1\}^r$, each of odd weight w/2.
- 2: Compute $H_0, H_1 \in \mathbb{F}_2^{r \times r}$ by right circular shifts of h_0 and h_1 .
- 3: Set $H = [H_0|H_1] \in \mathbb{F}_2^{r \times n}$.
- 4: Calculate $Q = (H_1^{-1} \overline{H}_0)^T$
- 5: Set $G = [I_k | Q]$.
- 6: **return** (*G*, *H*).

 $c = mG \oplus e$.

 $c = mG \oplus e$.

• To recover *m*, a *decoding algorithm* is required.

 $c = mG \oplus e$.

- To recover *m*, a *decoding algorithm* is required.
- The choice of decoder does not affect interoperability/functionality.

 $c = mG \oplus e$.

- To recover *m*, a *decoding algorithm* is required.
- The choice of decoder does not affect interoperability/functionality.
- However, for security reasons, the decoding algorithm must be constant time, and preferably with as low of a decoding failure rate (DFR) as possible.

• $\nu : \{0,1\}^* \to \{0,1\}^n$ – an efficient, deterministic, pseudorandom, one-way function with weight *t* outputs.

- $\nu : \{0,1\}^* \to \{0,1\}^n$ an efficient, deterministic, pseudorandom, one-way function with weight *t* outputs.
- $\mathsf{KDF}_1: \{0,1\}^* \to \{0,1\}^k$, and

- $\nu : \{0,1\}^* \to \{0,1\}^n$ an efficient, deterministic, pseudorandom, one-way function with weight *t* outputs.
- $\mathsf{KDF}_1: \{0,1\}^* \to \{0,1\}^k$, and
- $\mathsf{KDF}_2: \{0,1\}^* \to \{0,1\}^{256+\ell}$ where ℓ is the desired key length.

Algorithm 2 QCMDPC.Encap

Input: Public key *G*, and random seed $s \in \mathbb{F}_2^k$. **Output:** Symmetric key $K \in \{0, 1\}^m$ **Output:** Ciphertext $C = (C_1, C_2) \in \mathbb{F}_2^{256} \times \mathbb{F}_2^\ell$.

1: $e \quad \nu(s)$ \triangleright Compute *n*-bit error vector2: $y \quad KDF_1(e)$ \triangleright Compute *k*-bit masking value3: $x \quad s \oplus y$ \triangleright Obtain *k*-bit plain text4: $C_1 \quad xG \oplus e$ \triangleright Encrypt x with e5: $C_2 || K \quad KDF_2(s)$ \triangleright Encrypt x with e

Algorithm 3 QCMDPC.Decap

Input: Secret key *H*, ciphertext $(C_1, C_2) \in \mathbb{F}_2^{256} \times \mathbb{F}_2^{\ell}$, and dimension *k*.

Output: Symmetric key $K \in \{0,1\}^{\ell}$ or a decapsulation failure \perp .

1: $((x, e), d_{err})$ QCMDPC.Decrypt (H, C_1) . 2: y KDF₁(e)3: s $x \oplus y$ 4: e' $\nu(s)$. 5: $C'_2 || K$ KDF₂(s). 6: if e' = e and $C'_2 = C_2$ and $d_{err} =$ False then 7: return K8: else 9: return $\perp \leftarrow$ 10: end if

• State-of-the-art key distinguishing, key recovery, and decoding attacks.

- State-of-the-art key distinguishing, key recovery, and decoding attacks.
 - ISD,

- State-of-the-art key distinguishing, key recovery, and decoding attacks.
 - ISD,
 - Prange + Grover, MMT + Quantum Walks (QISD),

- State-of-the-art key distinguishing, key recovery, and decoding attacks.
 - ISD,
 - Prange + Grover, MMT + Quantum Walks (QISD),
- GJS

- State-of-the-art key distinguishing, key recovery, and decoding attacks.
 - ISD,
 - Prange + Grover, MMT + Quantum Walks (QISD),
- GJS
- IND-CPA reduction

See	curity					
Classical	Quantum	п	r	w	t	
80	58	9602	4801	90	84	
128	86	19714	9857	142	134	
256	154	65542	32771	274	264	

Table: Parameter sets for classical and quantum security¹.

¹Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes, 2012. Cryptology ePrint Archive, Report 2012/409. Using the (65542, 32771, 274, 264) parameter set:

Security					
Classical	Quantum	Public key	Private Key	Ciphertext	
256	154	4097	548	8226	

Table: Data sizes in bytes.

Thank You.