Quantum Resistant Public Key Encryption Scheme RLCE

Yongge Wang

UNC Charlotte

April 13, 2018

Outline

- Code Based Cryptography and RLCE
 - McEliece Encryption Scheme
 - RLCE Key setup
 - RLCE Encryption/Decryption
 - Why RLCE?
 - Systematic RLCE
- 2 Recommended parameters and RLCE padding
- 3 Appendix: Security Analysis and performance
 - ISD
 - Other potential security attacks
 - Filtration attacks
 - Performance

Outline

- Code Based Cryptography and RLCE
 - McEliece Encryption Scheme
 - RLCE Key setup
 - RLCE Encryption/Decryption
 - Why RLCE?
 - Systematic RLCE
- 2 Recommended parameters and RLCE padding
- 3 Appendix: Security Analysis and performance
 - ISD
 - Other potential security attacks
 - Filtration attacks
 - Performance

Outline

- Code Based Cryptography and RLCE
 - McEliece Encryption Scheme
 - RLCE Key setup
 - RLCE Encryption/Decryption
 - Why RLCE?
 - Systematic RLCE
- 2 Recommended parameters and RLCE padding
- 3 Appendix: Security Analysis and performance
 - ISD
 - Other potential security attacks
 - Filtration attacks
 - Performance

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

McEliece Scheme (1978)

Mc.KeySetup: An (n, k, 2t + 1) linear Goppa code C with $k \times n$ generator matrix G_s . Public key: $G = SG_sP$. Private key: G_s Where S is random and P is permutation.

Mc.Enc(G, \mathbf{m} , \mathbf{e}). For a message $\mathbf{m} \in \{0, 1\}^k$, choose a random vector $\mathbf{e} \in \{0, 1\}^n$ of weight t. The cipher text $\mathbf{c} = \mathbf{m}G + \mathbf{e}$

Mc.Dec(S, G_s, P, \mathbf{c}). For a received ciphertext \mathbf{c} , first compute $\mathbf{c}' = \mathbf{c}P^{-1} = \mathbf{m}SG$. Next use an error-correction algorithm to recover $\mathbf{m}' = \mathbf{m}S$ and compute the message \mathbf{m} as $\mathbf{m} = \mathbf{m}'S^{-1}$.

イロト イ理ト イヨト イヨト

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

McEliece Security

- Broken ones: Niederreiter's scheme with Generalized Reed-Solomon Code Broken
- Broken ones: Wild Goppa code based McEliece, GRS-McEliece with random columns
- Unbroken ones: Original McEliece, MDPC/LDPC McEliece, Wang's RLCE

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

McEliece Security

- Broken ones: Niederreiter's scheme with Generalized Reed-Solomon Code Broken
- Broken ones: Wild Goppa code based McEliece, GRS-McEliece with random columns
- Unbroken ones: Original McEliece, MDPC/LDPC McEliece, Wang's RLCE

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

McEliece Security

- Broken ones: Niederreiter's scheme with Generalized Reed-Solomon Code Broken
- Broken ones: Wild Goppa code based McEliece, GRS-McEliece with random columns
- Unbroken ones: Original McEliece, MDPC/LDPC McEliece, Wang's RLCE

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

RLCE Key setup

RLCE.KeySetup. Let G_s be a $k \times n$ generator matrix for an [n, k, d] linear code C correcting at least t errors and $w \leq n$. Let $G_s P_1 = [\mathbf{g}_0, \cdots, \mathbf{g}_{n-1}]$ for a random permutation P_1

- Let $G_1 = [\mathbf{g}_0, \dots, \mathbf{g}_{n-w}, \mathbf{r}_0, \dots, \mathbf{g}_{n-1}, \mathbf{r}_{w-1}]$ be a $k \times (n+w)$ matrix where $\mathbf{r}_i \in GF(q)^k$ are random
- ② Let $A_i \in GF(q)^{2\times 2}$ be random 2 × 2 matrices. Let $A = \text{diag}[I_{n-w}, A_0, \cdots, A_{w-1}]$ be an $(n+w) \times (n+w)$ non-singular matrix.
- 3 The public key: $k \times (n + w)$ matrix $G = SG_1AP_2$ and the private key: (S, G_s, P_1, P_2, A) where S is random $k \times k$ matrix and P_2 is a permutation.

College of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

RLCE Key setup

RLCE.KeySetup. Let G_s be a $k \times n$ generator matrix for an [n, k, d] linear code C correcting at least t errors and $w \leq n$. Let $G_s P_1 = [\mathbf{g}_0, \cdots, \mathbf{g}_{n-1}]$ for a random permutation P_1

- Let $G_1 = [\mathbf{g}_0, \dots, \mathbf{g}_{n-w}, \mathbf{r}_0, \dots, \mathbf{g}_{n-1}, \mathbf{r}_{w-1}]$ be a $k \times (n+w)$ matrix where $\mathbf{r}_i \in GF(q)^k$ are random
- 2 Let $A_i \in GF(q)^{2\times 2}$ be random 2 × 2 matrices. Let $A = \text{diag}[I_{n-w}, A_0, \cdots, A_{w-1}]$ be an $(n+w) \times (n+w)$ non-singular matrix.
- The public key: $k \times (n + w)$ matrix $G = SG_1AP_2$ and the private key: (S, G_s, P_1, P_2, A) where S is random $k \times k$ matrix and P_2 is a permutation.

イロト 不得 とくほと くほとう

College of Computing and Informatics

3

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

RLCE Key setup

RLCE.KeySetup. Let G_s be a $k \times n$ generator matrix for an [n, k, d] linear code C correcting at least t errors and $w \leq n$. Let $G_s P_1 = [\mathbf{g}_0, \cdots, \mathbf{g}_{n-1}]$ for a random permutation P_1

- Let $G_1 = [\mathbf{g}_0, \dots, \mathbf{g}_{n-w}, \mathbf{r}_0, \dots, \mathbf{g}_{n-1}, \mathbf{r}_{w-1}]$ be a $k \times (n+w)$ matrix where $\mathbf{r}_i \in GF(q)^k$ are random
- 2 Let $A_i \in GF(q)^{2\times 2}$ be random 2 × 2 matrices. Let $A = \text{diag}[I_{n-w}, A_0, \cdots, A_{w-1}]$ be an $(n+w) \times (n+w)$ non-singular matrix.
- So The public key: $k \times (n + w)$ matrix $G = SG_1AP_2$ and the private key: (S, G_s, P_1, P_2, A) where S is random $k \times k$ matrix and P_2 is a permutation.

イロト イヨト イヨト

College of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

RLCE Encryption/Decryption

RLCE.Enc(G, \mathbf{m} , \mathbf{e}). For a message $\mathbf{m} \in GF(q)^k$, choose $\mathbf{e} \in GF(q)^{n+w}$ of weight at most t. The cipher: $\mathbf{c} = \mathbf{m}G + \mathbf{e}$. RLCE.Dec(S, G_s , P_1 , P_2 , A, \mathbf{c}). For a cipher text \mathbf{c} , compute

$$\mathbf{c}P_2^{-1}A^{-1} = \mathbf{m}SG_1 + \mathbf{e}P_2^{-1}A^{-1} = [c'_0, \dots, c'_{n+w-1}].$$

Let $\mathbf{c}' = [c'_0, c'_1, \dots, c'_{n-w}, c'_{n-w+2}, \dots, c'_{n+w-2}] \in GF(q)^n$. Then $\mathbf{c}'P_1^{-1} = \mathbf{m}SG_s + \mathbf{e}'$ for some $\mathbf{e}' \in GF(q)^n$ of weight at most t. Using an efficient decoding algorithm, one can recover $\mathbf{m}SG_s$ from $\mathbf{c}'P_1^{-1}$. Let D be a $k \times k$ inverse matrix of SG'_s where G'_s is the first k columns of G_s . Then $\mathbf{m} = \mathbf{c}_1 D$ where \mathbf{c}_1 is the first k elements of $\mathbf{m}SG_s$.

ヘロト ヘヨト ヘヨト

Why RLCE?

Why RLCE?

The problem of decoding random linear codes is NP-hard

- Though challenging to show that decoding RLCE is
- Goppa-McEliece assumes Goppa codes behave like
- Other McEliece variants are based on stronger assumption
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though College of Computing and Informatics ヘロト ヘワト ヘビト ヘビト

э

Why RLCE?

Why RLCE?

- The problem of decoding random linear codes is NP-hard
- Though challenging to show that decoding RLCE is NP-hard, the mixed random columns could hide all structures of underlying linear code
- Goppa-McEliece assumes Goppa codes behave like
- Other McEliece variants are based on stronger assumption
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though College of Computing and Informatics ヘロト ヘワト ヘビト ヘビト

э

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Why RLCE?

- The problem of decoding random linear codes is NP-hard
- Though challenging to show that decoding RLCE is NP-hard, the mixed random columns could hide all structures of underlying linear code
- Goppa-McEliece assumes Goppa codes behave like random codes while RLCE does not requires such kind of assumption
- Other McEliece variants are based on stronger assumption that certain structured codes are hard to decode.
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though
 Smaller than Goppa-McEliece
 UNC CHARLOTTE
 College of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Why RLCE?

- The problem of decoding random linear codes is NP-hard
- Though challenging to show that decoding RLCE is NP-hard, the mixed random columns could hide all structures of underlying linear code
- Goppa-McEliece assumes Goppa codes behave like random codes while RLCE does not requires such kind of assumption
- Other McEliece variants are based on stronger assumption that certain structured codes are hard to decode.
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though smaller than Goppa-McEliece
 UNC Collegent

of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Why RLCE?

- The problem of decoding random linear codes is NP-hard
- Though challenging to show that decoding RLCE is NP-hard, the mixed random columns could hide all structures of underlying linear code
- Goppa-McEliece assumes Goppa codes behave like random codes while RLCE does not requires such kind of assumption
- Other McEliece variants are based on stronger assumption that certain structured codes are hard to decode.
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though
 Smaller than Goppa-McEliece
 UNC CHARLOTTE
 College of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Why RLCE?

- The problem of decoding random linear codes is NP-hard
- Though challenging to show that decoding RLCE is NP-hard, the mixed random columns could hide all structures of underlying linear code
- Goppa-McEliece assumes Goppa codes behave like random codes while RLCE does not requires such kind of assumption
- Other McEliece variants are based on stronger assumption that certain structured codes are hard to decode.
- Reed-Solomon codes has wide industry experience
- Limitation: RLCE public key sizes are larger though smaller than Goppa-McEliece

Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Systematic RLCE

- Decryption for systematic RLCE could be more efficient.
- In the RLCE, one recovers **m***SG*_s first.
- Let $\mathbf{m}SG_sP_1 = (d_0, \dots, d_{n-1})$ and $\mathbf{c}_d = (d'_0, \dots, d'_{n+w}) = (d_0, d_1, \dots, d_{n-w}, \bot, d_{n-w+1}, \bot, \dots, d_{n-1}, \bot)P_2$ be a length n + w vector.
- For each *i* < *k* such that *d'_i* = *d_j* for some *j* < *n*−*w*, we have *m_i* = *d_j*. Let

 $I_R = \{i : m_i \text{ is recovered via } \mathbf{m}SG_s\} \text{ and } \overline{I}_R = \{0, \cdots, k-1\} \setminus I_R.$

Assume that $|\bar{I}_R| = u$. It suffices to recover the remaining message symbols m_i with $i \in \bar{I}_R$.

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Systematic RLCE

- Decryption for systematic RLCE could be more efficient.
- In the RLCE, one recovers **m**SG_s first.
- Let $\mathbf{m}SG_sP_1 = (d_0, \dots, d_{n-1})$ and $\mathbf{c}_d = (d'_0, \dots, d'_{n+w}) = (d_0, d_1, \dots, d_{n-w}, \bot, d_{n-w+1}, \bot, \dots, d_{n-1}, \bot)P_2$ be a length n + w vector.
- For each *i* < *k* such that *d'_i* = *d_j* for some *j* < *n* − *w*, we have *m_i* = *d_j*. Let

 $I_R = \{i : m_i \text{ is recovered via } \mathbf{m}SG_s\} \text{ and } \overline{I}_R = \{0, \cdots, k-1\} \setminus I_R.$

Assume that $|\overline{I}_R| = u$. It suffices to recover the remaining message symbols m_i with $i \in \overline{I}_R$.

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Systematic RLCE

- Decryption for systematic RLCE could be more efficient.
- In the RLCE, one recovers **m**SG_s first.
- Let $\mathbf{m}SG_sP_1 = (d_0, \dots, d_{n-1})$ and $\mathbf{c}_d = (d'_0, \dots, d'_{n+w}) = (d_0, d_1, \dots, d_{n-w}, \bot, d_{n-w+1}, \bot, \dots, d_{n-1}, \bot)P_2$ be a length n + w vector.
- For each *i* < *k* such that *d'_i* = *d_j* for some *j* < *n* − *w*, we have *m_i* = *d_j*. Let

 $I_R = \{i : m_i \text{ is recovered via } \mathbf{m}SG_s\} \text{ and } \overline{I}_R = \{0, \cdots, k-1\} \setminus I_R.$

Assume that $|\overline{I}_R| = u$. It suffices to recover the remaining message symbols m_i with $i \in \overline{I}_R$.

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Systematic RLCE

- Decryption for systematic RLCE could be more efficient.
- In the RLCE, one recovers **m**SG_s first.
- Let $\mathbf{m}SG_sP_1 = (d_0, \dots, d_{n-1})$ and $\mathbf{c}_d = (d'_0, \dots, d'_{n+w}) = (d_0, d_1, \dots, d_{n-w}, \bot, d_{n-w+1}, \bot, \dots, d_{n-1}, \bot)P_2$ be a length n + w vector.
- For each *i* < *k* such that *d'_i* = *d_j* for some *j* < *n*−*w*, we have *m_i* = *d_j*. Let

 $I_R = \{i : m_i \text{ is recovered via } \mathbf{m}SG_s\} \text{ and } \overline{I}_R = \{0, \cdots, k-1\} \setminus I_R.$

Assume that $|\overline{I}_R| = u$. It suffices to recover the remaining message symbols m_i with $i \in \overline{I}_R$.

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Decoding algorith 1

The message symbols with indices in \bar{I}_R could be recovered by solving the linear equation system

$$\mathbf{m}\left[\mathbf{g}_{i_0},\cdots,\mathbf{g}_{i_{u-1}}\right] = \left[\mathbf{d}_{i_0}',\cdots,\mathbf{d}_{i_{u-1}}'\right]$$

where $\mathbf{g}_{i_0}, \cdots, \mathbf{g}_{i_{u-1}}$ are the corresponding columns in the public key. Choose *P* such that $\mathbf{m}P = (\mathbf{m}_{I_B}, \mathbf{m}_{\overline{I}_D})$. Then

$$(\mathbf{m}_{I_R}, \mathbf{m}_{\overline{I}_R}) P^{-1} \left[\mathbf{g}_{i_0}, \cdots, \mathbf{g}_{i_{u-1}} \right] = \left[d'_{i_0}, \cdots, d'_{i_{u-1}} \right]$$

Let $P^{-1} \begin{bmatrix} \mathbf{g}_{i_0}, \cdots, \mathbf{g}_{i_{u-1}} \end{bmatrix} = \begin{pmatrix} \mathbf{v} \\ W \end{pmatrix}$. Then

$$\mathbf{m}_{\overline{I}_R} W = [d'_{i_0}, \cdots, d'_{i_{u-1}}] - \mathbf{m}_{I_R} V.$$

$$\mathbf{m}_{\overline{I}_R} = \left([d'_{i_0}, \cdots, d'_{i_{u-1}}] - \mathbf{m}_{I_R} V \right)_{\mathbb{Q}} \mathcal{W}^{-1}_{\mathbb{Q}}$$

Yongge Wang

Quantum Resistant Public Key Encryption Scheme RLCE

College of Computing and Informatics

McEliece RLCE Key setup RLCE Encryption/Decryption Why RLCE? Systematic RLCE

Defeating side-channel attacks

For the decoding algorithms 1, the value u is dependent on the choice of the private permutation P_2 . Though the leakage of the size of u is not sufficient for the adversary to recover P_2 or to carry out other attacks against RLCE scheme, this kind of side-channel information leakage could be easily defeated by requiring u be smaller than u_0 in the following Table for selected P_2 .

RLCE ID	0	1	2	3	4	5	6
u ₀	200	123	303	190	482	309	7

ヘロト ヘヨト ヘヨト

Two groups of parameters

- Group 1: w < n w: This group is insecure due to the recent analysis by Alain Couvreur, Matthieu Lequesne, and Jean-Pierre Till
- Group 2: w = n k: This one should be used

Two groups of parameters

- Group 1: w < n w: This group is insecure due to the recent analysis by Alain Couvreur, Matthieu Lequesne, and Jean-Pierre Till
- Group 2: w = n k: This one should be used

Recommended parameters

ID	κ_c, κ_q	LD	n	k	t	W	т	sk	cipher	pk
0	128, 80	1	630	470	80	160	10	310116	988	188001
2	192,110	\perp	1000	764	118	236	10	747393	1545	450761
4	256,144	1	1360	800	280	560	11	1773271	2640	1232001
6	22,22	1	40	20	10	5	10	1059	57	626
7	128, 80	(13,6663,14)	612	466	76	146	10	284636	948	170091
9	192, 110	(11,9317,12)	1000	790	108	210	10	703371	1513	414751
11	256,144	(26,23350,34)	1200	700	280	500	11	1382314	2338	926501
13	24,24	(3, 68,4)	40	20	11	5	10	1059	57	626
14	25,25	(10, 262,14)	40	20	12	5	10	1059	57	626

RLCE Padding: RLCEpad

Questions?

ISD Other potential security attacks Filtration attacks Performance

Information-set decoding (ISD)

- Information-set decoding (ISD) is one of the most important message recovery attacks on McEliece encryption schemes.
- For the RLCE encryption scheme, the ISD attack is based on the number of columns in the public key *G* instead of the number of columns in the private key *G*_s.
- The cost of ISD attack on an [n, k, t; w]-RLCE scheme is equivalent to the cost of ISD attack on an [n + w, k; t]-McEliece scheme.

ISD Other potential security attacks Filtration attacks Performance

Information-set decoding (ISD)

- Information-set decoding (ISD) is one of the most important message recovery attacks on McEliece encryption schemes.
- For the RLCE encryption scheme, the ISD attack is based on the number of columns in the public key *G* instead of the number of columns in the private key *G*_s.
- The cost of ISD attack on an [n, k, t; w]-RLCE scheme is equivalent to the cost of ISD attack on an [n + w, k; t]-McEliece scheme.

ISD Other potential security attacks Filtration attacks Performance

Information-set decoding (ISD)

- Information-set decoding (ISD) is one of the most important message recovery attacks on McEliece encryption schemes.
- For the RLCE encryption scheme, the ISD attack is based on the number of columns in the public key *G* instead of the number of columns in the private key *G*_s.
- The cost of ISD attack on an [n, k, t; w]-RLCE scheme is equivalent to the cost of ISD attack on an [n + w, k; t]-McEliece scheme.

ISD Other potential security attacks Filtration attacks Performance

Naive ISD

- Uniformly selects *k* columns from the public key and checks whether it is invertible.
- If it is invertible, one multiplies the inverse with the corresponding ciphertext values in these coordinates that correspond to the k columns of the public key.
- If these coordinates contain no errors in the ciphertext, one recovers the plain text.

ISD Other potential security attacks Filtration attacks Performance

- Uniformly selects *k* columns from the public key and checks whether it is invertible.
- If it is invertible, one multiplies the inverse with the corresponding ciphertext values in these coordinates that correspond to the k columns of the public key.
- If these coordinates contain no errors in the ciphertext, one recovers the plain text.

ISD Other potential security attacks Filtration attacks Performance

- Uniformly selects *k* columns from the public key and checks whether it is invertible.
- If it is invertible, one multiplies the inverse with the corresponding ciphertext values in these coordinates that correspond to the k columns of the public key.
- If these coordinates contain no errors in the ciphertext, one recovers the plain text.

ISD Other potential security attacks Filtration attacks Performance

Quantum ISD

- For a function $f : \{0, 1\}^{l} \to \{0, 1\}$ with the property that there is an $x_0 \in \{0, 1\}^{l}$ such that $f(x_0) = 1$ and f(x) = 0 for all $x \neq x_0$, Grover's algorithm finds the value x_0 using $\frac{\pi}{4}\sqrt{2^{l}}$ Grover iterations and O(l) qubits.
- Grover's algorithm converts the function *f* to a reversible circuit *C*_f and calculates

$$|x\rangle \stackrel{C_f}{\longrightarrow} (-1)^{f(x)}|x\rangle$$

in each of the Grover iterations. Thus the total steps for Grover's algorithm is bounded by $\frac{\pi |C_f|}{4} \sqrt{2^f}$.

ヘロト ヘワト ヘビト ヘビト

ISD Other potential security attacks Filtration attacks Performance

Quantum ISD

- For a function $f : \{0, 1\}^{l} \to \{0, 1\}$ with the property that there is an $x_0 \in \{0, 1\}^{l}$ such that $f(x_0) = 1$ and f(x) = 0 for all $x \neq x_0$, Grover's algorithm finds the value x_0 using $\frac{\pi}{4}\sqrt{2^{l}}$ Grover iterations and O(l) qubits.
- Grover's algorithm converts the function *f* to a reversible circuit *C_f* and calculates

$$|x\rangle \stackrel{C_f}{\longrightarrow} (-1)^{f(x)} |x\rangle$$

in each of the Grover iterations. Thus the total steps for Grover's algorithm is bounded by $\frac{\pi |C_f|}{4} \sqrt{2^{I}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

ISD Other potential security attacks Filtration attacks Performance

Quantum ISD against RLCE

Thus Grover's quantum algorithm requires approximately

$$7\left((n+w)k+k^{2.807}+k^2\right)(\log_2 q)^{1.585}\sqrt{\frac{\binom{n+w}{k}}{\binom{n+w-t}{k}}}$$

steps for the simple ISD algorithm against RLCE encryption scheme.

ISD Other potential security attacks Filtration attacks Performance

ISD for systematic RLCE schemes

- One uniformly selects $k = k_1 + k_2$ columns from the public key where k_1 columns are from the first k columns of the public key.
- Assume that first *k*₁ columns have no error. Simplify the computation process for ISD

ISD Other potential security attacks Filtration attacks Performance

ISD for systematic RLCE schemes

- One uniformly selects $k = k_1 + k_2$ columns from the public key where k_1 columns are from the first k columns of the public key.
- Assume that first k₁ columns have no error. Simplify the computation process for ISD

ISD Other potential security attacks Filtration attacks Performance

Insecure ciphertexts for systematic RLCE schemes

• For a systematic RLCE, if a small number of errors were added to the first *k* components of the ciphertext, one may be able to exhaustively search these errors.

• Let

$$\gamma_{l} = \max_{l \le i \le t} \left\{ \frac{\binom{k-l}{k-i}}{q^{i}\binom{k}{i}} \right\}$$

The RLCE produces an insecure ciphertext in case that the ciphertext contains at most *l* errors within the first *k* components of the ciphertext and $\gamma_l > 2^{-\kappa_c}$ where κ_c is the security parameter.

イロト 不得 とくほ とくほう

ISD Other potential security attacks Filtration attacks Performance

Insecure ciphertexts for systematic RLCE schemes

• For a systematic RLCE, if a small number of errors were added to the first *k* components of the ciphertext, one may be able to exhaustively search these errors.

Let

$$\gamma_{l} = \max_{l \le i \le t} \left\{ \frac{\binom{k-l}{k-i}}{q^{i}\binom{k}{i}} \right\}$$

The RLCE produces an insecure ciphertext in case that the ciphertext contains at most *I* errors within the first *k* components of the ciphertext and $\gamma_I > 2^{-\kappa_c}$ where κ_c is the security parameter.

ヘロト ヘヨト ヘヨト

ISD Other potential security attacks Filtration attacks Performance

Sidelnikov-Shestakov's attack

- If w ≥ n − k, not enough equations for Sidelnikov-Shestakov's attack
- If w < n k, one need to guess some values to establish enough equations. The guess space is normally too big to be successful.

ISD Other potential security attacks Filtration attacks Performance

Sidelnikov-Shestakov's attack

- If w ≥ n − k, not enough equations for Sidelnikov-Shestakov's attack
- If w < n k, one need to guess some values to establish enough equations. The guess space is normally too big to be successful.

ISD Other potential security attacks Filtration attacks Performance

Known non-randomized column attack

- What happens if the positions of non-randomized n w GRS columns are known to the adversary?
- Possibility one: guess the remaining *w* columns of the GRS generator matrix. Search space too big
- Use Sidelnikov-Shestakov attack to calculate a private key for the punctured [n – w, k] GRS_k code consisting of the non-randomized GRS columns and then list-decode the punctured [n – w, k] GRS_k code.

ISD Other potential security attacks Filtration attacks Performance

Known non-randomized column attack

- What happens if the positions of non-randomized n w GRS columns are known to the adversary?
- Possibility one: guess the remaining w columns of the GRS generator matrix. Search space too big
- Use Sidelnikov-Shestakov attack to calculate a private key for the punctured [n w, k] GRS_k code consisting of the non-randomized GRS columns and then list-decode the punctured [n w, k] GRS_k code.

ISD Other potential security attacks Filtration attacks Performance

Known non-randomized column attack

- What happens if the positions of non-randomized n w GRS columns are known to the adversary?
- Possibility one: guess the remaining *w* columns of the GRS generator matrix. Search space too big
- Use Sidelnikov-Shestakov attack to calculate a private key for the punctured [n – w, k] GRS_k code consisting of the non-randomized GRS columns and then list-decode the punctured [n – w, k] GRS_k code.

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks

- For two codes C_1 and C_2 of length *n*, the star product code $C_1 * C_2$ is the vector space spanned by $\mathbf{a} * \mathbf{b}$ for all pairs $(\mathbf{a}, \mathbf{b}) \in C_1 \times C_2$ where $\mathbf{a} * \mathbf{b} = [a_0 b_0, a_1 b_1, \cdots, a_{n-1} b_{n-1}]$.
- For the square code C² = C * C of C, we have dim C² ≤ min {n, (^{dim C+1})/₂}.
- For an [n, k] GRS code C, let $\mathbf{a}, \mathbf{b} \in \text{GRS}_k(\mathbf{x}, \mathbf{y})$ where $\mathbf{a} = (y_0 p_1(x_0), \dots, y_{n-1} p_1(x_{n-1}))$ and $\mathbf{b} = (y_0 p_2(x_0), \dots, y_{n-1} p_2(x_{n-1}))$. Then $\mathbf{a} * \mathbf{b} = (y_0^2 p_1(x_0) p_2(x_0), \dots, y_{n-1}^2 p_1(x_{n-1}) p_2(x_{n-1}))$. Thus $\text{GRS}_k(\mathbf{x}, \mathbf{y})^2 \subseteq \text{GRS}_{2k-1}(\mathbf{x}, \mathbf{y} * \mathbf{y})$ where we assume $2k - 1 \le n$.

イロト 不得 とくほと くほとう

-

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks

- For two codes C_1 and C_2 of length *n*, the star product code $C_1 * C_2$ is the vector space spanned by $\mathbf{a} * \mathbf{b}$ for all pairs $(\mathbf{a}, \mathbf{b}) \in C_1 \times C_2$ where $\mathbf{a} * \mathbf{b} = [a_0 b_0, a_1 b_1, \cdots, a_{n-1} b_{n-1}]$.
- For the square code $C^2 = C * C$ of C, we have $\dim C^2 \leq \min \left\{ n, \binom{\dim C+1}{2} \right\}.$
- For an [n, k] GRS code C, let $\mathbf{a}, \mathbf{b} \in \text{GRS}_k(\mathbf{x}, \mathbf{y})$ where $\mathbf{a} = (y_0 p_1(x_0), \dots, y_{n-1} p_1(x_{n-1}))$ and $\mathbf{b} = (y_0 p_2(x_0), \dots, y_{n-1} p_2(x_{n-1}))$. Then $\mathbf{a} * \mathbf{b} = (y_0^2 p_1(x_0) p_2(x_0), \dots, y_{n-1}^2 p_1(x_{n-1}) p_2(x_{n-1}))$. Thus $\text{GRS}_k(\mathbf{x}, \mathbf{y})^2 \subseteq \text{GRS}_{2k-1}(\mathbf{x}, \mathbf{y} * \mathbf{y})$ where we assume $2k - 1 \le n$.

イロト 不得 とくほと くほとう

3

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks

- For two codes C_1 and C_2 of length *n*, the star product code $C_1 * C_2$ is the vector space spanned by $\mathbf{a} * \mathbf{b}$ for all pairs $(\mathbf{a}, \mathbf{b}) \in C_1 \times C_2$ where $\mathbf{a} * \mathbf{b} = [a_0 b_0, a_1 b_1, \cdots, a_{n-1} b_{n-1}]$.
- For the square code $C^2 = C * C$ of C, we have $\dim C^2 \le \min \left\{ n, \binom{\dim C+1}{2} \right\}.$
- For an [n, k] GRS code C, let $\mathbf{a}, \mathbf{b} \in \text{GRS}_k(\mathbf{x}, \mathbf{y})$ where $\mathbf{a} = (y_0 p_1(x_0), \dots, y_{n-1} p_1(x_{n-1}))$ and $\mathbf{b} = (y_0 p_2(x_0), \dots, y_{n-1} p_2(x_{n-1}))$. Then $\mathbf{a} * \mathbf{b} = (y_0^2 p_1(x_0) p_2(x_0), \dots, y_{n-1}^2 p_1(x_{n-1}) p_2(x_{n-1}))$. Thus $\text{GRS}_k(\mathbf{x}, \mathbf{y})^2 \subseteq \text{GRS}_{2k-1}(\mathbf{x}, \mathbf{y} * \mathbf{y})$ where we assume $2k - 1 \le n$.

ヘロン 人間 とくほ とくほ とう

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks against GRS-RLCE

- G is public key for an (n, k, d, t, w) GRS-RLCE scheme.
- Let C be the code generated by the rows of G.
- Let \mathcal{D}_1 be the code with a generator matrix D_1 obtained from *G* by replacing the randomized 2w columns with all-zero columns and let \mathcal{D}_2 be the code with a generator matrix D_2 obtained from *G* by replacing the n - wnon-randomized columns with zero columns.
- Since $C \subset D_1 + D_2$ and the pair (D_1, D_2) is an orthogonal pair, we have $C^2 \subset D_1^2 + D_2^2$. It follows that

 $2k - 1 \le \dim C^2 \le \min\{2k - 1, n - w\} + 2w$

where we assume that $2w \leq k^2$.

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks against GRS-RLCE

- G is public key for an (n, k, d, t, w) GRS-RLCE scheme.
- Let C be the code generated by the rows of G.
- Let \mathcal{D}_1 be the code with a generator matrix D_1 obtained from *G* by replacing the randomized 2w columns with all-zero columns and let \mathcal{D}_2 be the code with a generator matrix D_2 obtained from *G* by replacing the n - wnon-randomized columns with zero columns.
- Since $C \subset D_1 + D_2$ and the pair (D_1, D_2) is an orthogonal pair, we have $C^2 \subset D_1^2 + D_2^2$. It follows that

 $2k-1 \leq \dim \mathcal{C}^2 \leq \min\{2k-1, n-w\} + 2w$

where we assume that $2w \leq k^2$.

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks against GRS-RLCE

- G is public key for an (n, k, d, t, w) GRS-RLCE scheme.
- Let C be the code generated by the rows of G.
- Let \mathcal{D}_1 be the code with a generator matrix D_1 obtained from *G* by replacing the randomized 2w columns with all-zero columns and let \mathcal{D}_2 be the code with a generator matrix D_2 obtained from *G* by replacing the n - wnon-randomized columns with zero columns.
- Since $C \subset D_1 + D_2$ and the pair (D_1, D_2) is an orthogonal pair, we have $C^2 \subset D_1^2 + D_2^2$. It follows that

 $2k-1 \leq \dim \mathcal{C}^2 \leq \min\{2k-1, n-w\} + 2w$

where we assume that $2w \leq k^2$.

ISD Other potential security attacks Filtration attacks Performance

Filtration attacks against GRS-RLCE

- G is public key for an (n, k, d, t, w) GRS-RLCE scheme.
- Let C be the code generated by the rows of G.
- Let \mathcal{D}_1 be the code with a generator matrix D_1 obtained from *G* by replacing the randomized 2w columns with all-zero columns and let \mathcal{D}_2 be the code with a generator matrix D_2 obtained from *G* by replacing the n - wnon-randomized columns with zero columns.
- Since C ⊂ D₁ + D₂ and the pair (D₁, D₂) is an orthogonal pair, we have C² ⊂ D₁² + D₂². It follows that

$$2k-1 \leq \dim \mathcal{C}^2 \leq \min\{2k-1, n-w\} + 2w$$

UNC CHARLOTTE silege of Computing and Informatics

where we assume that $2w \le k^2$.

イロト イポト イヨト イヨト

ISD Other potential security attacks Filtration attacks Performance

- Assume that the 2w randomized columns in D₂ behave like random columns in the filtration attacks
- We have dim $C^2 = D_1^2 + D_2^2 = n w + D_2^2 = n + w$.
- For any code C' of length n' that is obtained from C using code puncturing and code shortening, we have dim C'² = n'.
- Thus filtration techniques could not be used to recover any non-randomized columns in *D*₁.

ISD Other potential security attacks Filtration attacks Performance

- Assume that the 2w randomized columns in D₂ behave like random columns in the filtration attacks
- We have dim $C^2 = D_1^2 + D_2^2 = n w + D_2^2 = n + w$.
- For any code C' of length n' that is obtained from C using code puncturing and code shortening, we have dim C'² = n'.
- Thus filtration techniques could not be used to recover any non-randomized columns in *D*₁.

ISD Other potential security attacks Filtration attacks Performance

- Assume that the 2w randomized columns in D₂ behave like random columns in the filtration attacks
- We have dim $C^2 = D_1^2 + D_2^2 = n w + D_2^2 = n + w$.
- For any code C' of length n' that is obtained from C using code puncturing and code shortening, we have dim C'² = n'.
- Thus filtration techniques could not be used to recover any non-randomized columns in *D*₁.

ISD Other potential security attacks Filtration attacks Performance

- Assume that the 2w randomized columns in D₂ behave like random columns in the filtration attacks
- We have dim $C^2 = D_1^2 + D_2^2 = n w + D_2^2 = n + w$.
- For any code C' of length n' that is obtained from C using code puncturing and code shortening, we have dim C'² = n'.
- Thus filtration techniques could not be used to recover any non-randomized columns in *D*₁.

ISD Other potential security attacks Filtration attacks Performance

Running times for RLCE with Decoding Algorithm 1 (in milliseconds)

ID	key	encry	ption	decryption		
		RLCEspad	RLCEpad	RLCEspad	RLCEpad	
0	340.616	0.565	0.538	1.574	1.509	
2	1253.926	1.255	1.166	3.034	2.937	
4	3215.791	2.836	2.796	13.092	12.925	

Yongge Wang Quantum Resistant Public Key Encryption Scheme RLCE

ISD Other potential security attacks Filtration attacks Performance

RLCE CPU cycles

ID	key generation	encryption	decryption
0	1011071617	1805010	4646941
2	3829675407	3331234	8668186
4	9612380645	8184051	36705481

ISD Other potential security attacks Filtration attacks Performance

RLCE peak memory usage (bytes)

ID	Mul. Table	key generation	encryption	decryption
0	N	2,536,704	798,288	1,335,280
0	Y	4,648,656	2,437,320	2,856,584
2	N	6,178,744	1,906,576	3,178,688
2	Y	8,287,312	2,865,400	3,825,112
4	N	11,561,352	4,829,968	7,010,368
4	Y	19,975,040	10,258,112	12,227,384

ISD Other potential security attacks Filtration attacks Performance

Questions

Questions?

