Rainbow

Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt and Bo-Yin Yang

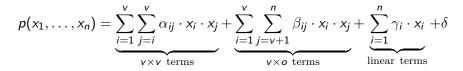
First NIST PostQuantum Standardization Workshop

Fort Lauderdale, Florida 04/12/2018

Jintai Ding

Rainbow

Type: Signature Scheme


Family: Multivariate Cryptography

Ji			

Rainbow

Oil-Vinegar Polynomials [Pa97]

Let \mathbb{F} be a (finite) field. For $o, v \in \mathbb{N}$ set n = o + v and define

- x_1, \ldots, x_v : Vinegar variables
- x_{v+1}, \ldots, x_n : Oil variables
- not fully mixed: no o × o terms

$v \times v$ terms	$v \times o$ terms	$o \times o$ terms	v terms	o terms	
quadratic	quadratic	0	linear in <i>v</i>	linear in <i>o</i>	δ

Jintai Ding		

周 ト イ ヨ ト イ ヨ ト

The Oil and Vinegar Signature Scheme - Key Generation

- Parameters: finite field \mathbb{F} , integers o, v, set n = o + v
- central map $\mathcal{F} : \mathbb{F}^n \to \mathbb{F}^o$ consists of o Oil-Vinegar polynomials $f^{(1)}, \ldots, f^{(o)}$.
- Compose \mathbb{F} with a randomly chosen invertible affine map $\mathcal{T}:\mathbb{F}^n
 ightarrow\mathbb{F}^n$
- public key: $\mathcal{P} = \mathcal{F} \circ \mathcal{T} : \mathbb{F}^n \to \mathbb{F}^o$
- private key: \mathcal{F}, \mathcal{T}

<日本

<</p>

Signature Generation

•
$$\mathcal{P}^{-1} = \mathcal{T}^{-1} \circ \mathcal{F}^{-1}$$

- Inversion of ${\cal F}$
 - random assign vinegar values

$$f^{(k)} = \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{ij}^{(k)} \mathbf{x}_{i} \cdot \mathbf{x}_{j} + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{ij}^{(k)} \mathbf{x}_{i} \cdot \mathbf{x}_{j} + \sum_{i=1}^{n} \gamma_{i}^{(k)} \mathbf{x}_{i} + \delta^{(k)}$$

- solve the resulting linear system with o equations and o variables to derive the oil values
- If the system does not have a solution, repeat.

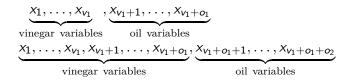
- balanced case (o = v) broken by Kipnis, Shamir
- Unbalanced Oil and Vinegar (UOV) with $v \gg o$ [KP99]
- Signature is more than twice the hash \Rightarrow Rainbow

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Rainbow Signature Scheme (2005) - Key Generation

- Finite field \mathbb{F} , integers $0 < v_1 < \cdots < v_u < v_{u+1} = n$.
- Set $V_i = \{1, \ldots, v_i\}$, $O_i = \{v_i + 1, \ldots, v_{i+1}\}$, $o_i = v_{i+1} v_i$.
- Central map \mathcal{F} consists of $m = n v_1$ polynomials $f^{v_1+1}, \ldots, f^{(n)}$ of the form


$$f^{(k)} = \sum_{i,j\in V_{\ell}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i\in V_{\ell}, j\in O_{\ell}} \beta_{ij}^{(k)} x_i x_j + \sum_{i\in V_{\ell}\cup O_{\ell}} \gamma_i^{(k)} x_i + \delta^{(k)},$$

with coefficients $\alpha_{ij}^{(k)}$, $\beta_{ij}^{(k)}$, $\gamma_i^{(k)}$ and $\delta^{(k)}$ randomly chosen from \mathbb{F} and ℓ being the only integer such that $k \in O_{\ell}$.

- Choose randomly two affine (or linear) transformations S : 𝔽^m → 𝔽^m and T : 𝔽ⁿ → 𝔽ⁿ.
- public key: $\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T} : \mathbb{F}^n \to \mathbb{F}^m$
- private key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variable Structure

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Signature Generation

Given: message d

 $\textbf{0} \hspace{0.1 in} \textsf{Use a hash function} \hspace{0.1 in} \mathcal{H}: \{0,1\} \rightarrow \mathbb{F}^m \hspace{0.1 in} \textsf{to compute} \hspace{0.1 in} \textbf{w} = \mathcal{H}(d) \in \mathbb{F}^m$

② Compute
$$\mathbf{x} = \mathcal{S}^{-1}(\mathbf{w}) \in \mathbb{F}^m$$
.

- ${f 0}$ Compute a pre-image ${f y}\in {\Bbb F}^n$ of ${f x}$ under the central map ${\cal F}$
 - ► Choose random values for the vinegar variables y₁,..., y_v and substitute into the polynomials f^(v+1),..., f⁽ⁿ⁾

- ★ Solve the linear system $f^{(i)} = x_i$ $(i = v_i + 1, ..., v_{i+1})$ by Gaussian Elimination
- * Substitute the values of $y_{v_i+1}, \ldots, y_{v_{i+1}}$ into the polynomials $f^{(v_{i+1}+1)}, \ldots, f^{(n)}$.

• Compute the signature $\sigma \in \mathbb{F}^n$ by $\mathbf{z} = \mathcal{T}^{-1}(\mathbf{y})$.

Signature Generation

assign random values to the vinegar variables of the first layer

 x₁,..., x_{v1}
 x_{v1+1},..., x_{v1+o1}
 oil variables

 solve the resulting linear system for the oil variables of the first layer
 x₁,..., x_{v1+o1} are known and substitute them into the second layer
 x₁,..., x_{v1}, x_{v1+1},..., x_{v1+o1}
 x_{v1+o1+1}, x_{v1+o1+o1}
 x_{v1+o1+1}, ..., x_{v1+o1+o2}
 oil variables

- Solve the resulting linear system for $x_{v_1+o_1+1}, \ldots, x_{v_1+o_1+o_2}$.
- If one of the linear systems has no solution, choose other values for the vinegar variables of the first layer.

Signature Verification

Given: message d, signature $\sigma \in \mathbb{F}^n$

- **①** Compute $\mathbf{w} = \mathcal{H}(d)$.
- **2** Compute $\mathbf{w}' = \mathcal{P}(\sigma)$.

Accept the signature $\sigma \Leftrightarrow \mathbf{w}' = \mathbf{w}$.

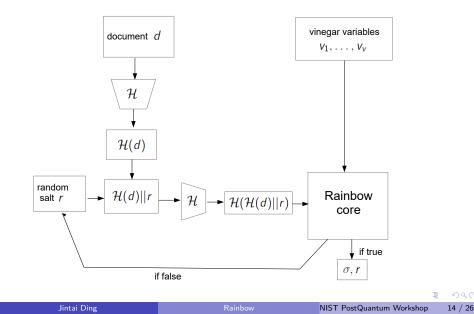
э

Design Decisions

- underlying field: GF(16), GF(31) and GF(256)
 - \Rightarrow tradeoff between key size, signature size, performance and security
- 2 Rainbow layers
 - better performance than 1 layer (UOV)
 - more than two layers do not provide significantly better performance, but make it more difficult to defend the scheme against attacks
- choose the size of the layers to be equal (with one exception)

EUF-CMA Security

Idea: Use of a 128 bit nonce


Signature Generation:

- For a document d to be signed, compute $\mathcal{H}(d)$ first (leads to better performance).
- Choose random values for the vinegar variables v_1, \ldots, v_v .
- Choose a 128-bit random salt r; if Rainbow does not output a signature for H(H(d)||r), choose another salt and try again.
- The final signature is (σ, r) , where σ is the standard Rainbow signature.

Signature Verification: Check, if $\sigma \in \mathbb{F}^n$ is a valid signature for $\mathcal{H}(\mathcal{H}(d)||r)$.

4 AR & 4 E & 4 E &

EUF-CMA-Secure Signature Generation Process

Representation of field elements

- Elements of GF(31): integers in $\{0,\ldots,30\}$
- Elements of GF(16) and GF(31):
 - Elements of GF(2): bits
 - Elements of GF(4): linear polynomials over GF(2)
 - Elements of GF(16): linear polynomials over GF(4)
 - Elements of GF(256): linear polynomials over GF(16)

4 AR N 4 E N 4 E N

Implementation (2)

- multiplication of finite field elements
 - ▶ GF(31): common multiplication / reduction
 - GF(16) and GF(256)
 - reference implementation: logic bit operations / polynomial multiplication
 - optimized implementation: query log/exp-tables with AVX2 instructions (for time constancy)
- constant time Gaussian elimination to prevent timing attacks
- constant time MQ-evaluation to compute the $v \times v$ terms of the central map
- optimized implementation: AVX2 vector instructions
- \Rightarrow Much more details in the proposal

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Security

• no security proof / reduction to a hard problem

- security is measured by the complexity of known attacks
 - colission attacks against the hash function
 - direct attacks
 - MinRank attack
 - HighRank attack
 - RBS attack
 - UOV attack

 \Rightarrow Detailed analysis of all attacks (including quantum improvements) in the proposal

Parameters over GF(16)

parameter	parameters	public key	private key	hash size	signature	NIST security
set	v_1, o_1, o_2	size (kB)	size (kB)	(bit)	size (bit)	category
la	32,32,32	148.5	97.9	256	512	I
IVa	56,48,48	552.2	367.3	384	736	IV
Vla	76,64,64	1,319.7	871.2	512	944	VI

• Signature size includes 128 bit salt

э

A (10) N (10)

Parameters over GF(16) - Performance

		key generation	signature generation	signature verification
	cycles	1,302M/1,081M	601k/75.5k	350k/25.5k
la	time (ms)	394/328	0.182/0.023	0.106/0.008
	memory	3.3MB/3.0MB	3.0MB/3.0MB	2.6MB/2.8MB
	cycles	11,176M/8,673M	1,823k/899k	1,241k/181k
IVa	time (ms)	3,387/2,628	0.552/0.272	0.376/0.055
	memory	4.3MB/4.1MB	3.0MB/3,3MB	2.8MB/3.2MB
	cycles	45,064M / 6,689M	3,916k / 575k	2,897k/367k
Vla	time (ms)	13,655/2,027	1.187/0.174	0.878/0.111
	memory	6.1MB/6.1MB	3.8MB/3.9MB	3.8MB/3.8MB

Performance on

NIST Reference Platform (Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, no special processor instructions) /

Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, AVX2 vector instructions

 \Rightarrow By using AVX2 instructions, we can speed up signature generation and verification by approximately 85 %. With regard to key generation, the speed up is only important for high levels of security.

Parameters over GF(31)

parameters	public key	private key	hash size	signature	NIST security
v_1, o_1, o_2	size (kB)	size (kB)	(bit)	size (bit)	category
36,28,28	148.3	103.7	268	624	1,11
64,32,48	512.1	371.4	384	896	III, IV
84,56,56	1,321.0	922.4	536	1,176	IV

• Signatures include 128 bit salt

• For the second parameter set, the layers were chosen to be unbalanced in order to enhance the security of the scheme against quantum HighRank attacks

Parameters over GF(31) - Performance

		key generation	signature generation	signature verification
	cycles	4,578M/141M	2,044/426k	1,944k/496k
lb	time (ms)	1,378/42.83	0.619/0.129	0.589/0.15
	memory	3.6MB/3.6MB	3.3MB/3.2MB	2.9MB/2.9MB
	cycles	26,172M/813M	5,471k/1,469k	4,908k/1,791k
IIIb	time (ms)	7,931/246	1.658/0.445	1.487/0.543
	memory	5.7MB/5.9MB	3.6MB/4.1MB	3.9MB/4.1MB
	cycles	164,689M / 3,518M	16,755k /3,655k	11,224k/4,690k
VIb	time (ms)	49,906/1,066	5.077/1.108	3.401/1.421
	memory	10.3MB/10.0MB	4.4MB/5.3MB	6.0MB/6.0MB

Performance on

NIST Reference Platform (Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, no special processor instructions) /

Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, AVX2 vector instructions

 \Rightarrow With regard to key generation, the speedup by AVX2 instructions is dramatic (97-98%). For signature generation and verification, we get a speed up of approximately 75 %.

Parameters over GF(256)

parameters	public key	private key	hash size	signature	NIST security
v_1, o_1, o_2	size (kB)	size (kB)	(bit)	size (bit)	category
40,24,24	187.7	140.0	384	832	I , II
68,36,36	703.9	525.2	576	1,248	III, IV
92,48,48	1,683.3	1,244.4	768	1,632	V, VI

• Signatures include 128 bit salt

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Parameters over GF(256) - Performance

		key generation	signature generation	signature verification
	cycles	4,089M/183M	1,521/111k	939k/57.5k
lc	time (ms)	1,239/55.4	0.461/0.034	0.0.285/0.017
	memory	3.3MB/3.3MB	3.0MB/3.0MB	2.8MB/2.8MB
	cycles	31,612M/1,430M	4,047k/326k	2,974k/275k
IIIc	time (ms)	9,579/433	1.226/0.099	0.901/0.083
	memory	4.6MB/4.6MB	2.9MB/3.5MB	3.1MB/3.3MB
	cycles	116,046M / 4,633M	8,688k /616k	6,174k/472k
Vc	time (ms)	35,165/1,404	2.633/0.187	1.871/0.143
	memory	7.0MB/7.0MB	3.7MB/4.2MB	3.9MB/4.5MB

Performance on

NIST Reference Platform (Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, no special processor instructions) /

Intel Xeon E3-1225 v5 (Skylake), 3.3 GHz, AVX2 vector instructions

 \Rightarrow Independently of parameter choice and kind of algorithm, we get, by the use of AVX2 instructions, a speed up of 90-95 %.

A (1) N (2) N (2) N (2) N

Parameters - Overview

security			
category	GF(16)	GF(31)	GF(256)
I	la	lb	lc
II	-	lb	lc
	-	IIIb	IIIc
IV	IVa	IIIb	IIIc
V	-	-	Vc
VI	Vla	VIb	Vc

3

イロト イヨト イヨト イヨト

Optimal Parameters

security	size		running time		
category	key	signature	key generation	signature generation	
I	la	la	lb	la	
II	lb	lb	lb	lc	
	IIIb	IIIb	IIIb	IIIc	
IV	IIIb	IVa	IIIb	IIIc	
V	Vc	Vc	Vc	Vc	
VI	Vla	Vla	Vb	Vc	

 \Rightarrow Each of our parameter sets is optimal with regard to at least one category

э

Advantages and Limitations

Advantages:

- Simple and easy to implement
- Practical security well understood
- very fast
- modest computational resources
- Implementation immune against timing attacks

Limitations:

• Large key sizes