Round2: PQ KEM and PKE

Round2 Team

Philips Security Technologies April 2018

Motivation:

Different applications, different needs

Different applications, different needs

Note: the applications in this figure are only examples to illustrate that different applications have different security & performance needs.

Philips Security Technologies

- One unified design to fit all use cases,
 - Ring and non-ring support.
 - Round2.KEM and Round.PKE with same building blocks.
- Fine-grained scaling of parameters to any required security level.
- Great bandwidth.
- Great computation speed.
- LWR, well-studied lattice problem.

Main features LWR-based

• Builds on LWR problem:

Search LWR: public integers p,q, public matrix $A \in Z_q^{d \times d}$, secret $s \in Z_q^d$, public vector $b = \left\lfloor \frac{p}{q} As \right\rfloor$ (mod p). Find s.

- Compared with LWE:
 - Improved bandwidth (p < q).
 - Improved computation.
 - No noise sampling needed.

General LWR (GLWR) unifies LWR and RLWR

- Allows for unified design and implementation:
 - Ring $R_{n,q}$, for n = 1, $R_{n,q} \equiv \mathbb{Z}_q$.
- Fits applications with different trust needs (presence/absence of ring structure).

Common building blocks for INDCPA and INDCCA security

Round2.KEM and Round.PKE support applications with different performance/security needs:

- Using common building blocks.
- Secure email can rely on Round2.PKE (INDCCA).
- IPSec VPN can use faster (~2x) Round2.KEM (INDCPA).

Common building blocks for INDCPA and INDCCA security

- Received official comment on INDCPA proof.
- Easily solvable as indicated by SABER team in their official comment.
- No change to parameters.

8

Prime cyclotomic ring

$$R_n = \frac{x^{n+1} - 1}{x - 1}$$

- Security
 - Provable: Known reductions from RLWE and (Ideal) lattice problems.
 - Practical: Parameters chosen to avoid subrings (and thus, potential attacks).
- Scalable (bandwidth and security level) due to many choices for *n*.

n	418	676
Public-key (Bytes)	435	709
Ciphertext (Bytes)	482	868
Failure probability (log2)	-81	-65
Best (quantum) attack (bits)	75	139
Best (classical) attack (bits)	79	144

https://bitwiseshiftleft.github.io/estimate-allthe-lwe-ntru-schemes.github.io/graphs

Main features

GLWR and ring choice lead to great bandwidth performance

- For similar security level (bits), Round2 offers better performance.
- Round2 is scalable: parameters easily configured to offer *any required* security target.

Philips Security Technologies

Power of two moduli *q*, *p*, *t*

- *p*, *t*: Optimized bandwidth (transmit only $log_2 p$, $log_2 t$ bits).
- *t*: Allows to finely tune failure probability (depends on *t*).
- q: Optimized CPU performance in both ring and non-ring settings.

Generation of public parameter: $A \leftarrow f_n^{\tau}$

DHIIDS

Sparse trinary secrets with fixed hamming weight

- Definition depends on d, and not on n, to enable unified implementation
 - Matrix-based multiplication involves always d dimensional vectors, independently of ring or non-ring settings.
- Great performance.
- Low failure probability.

Parameter sets

- uRound2: unified implementation for ring and non-ring
 - Main submission.
 - One implementation, any set of parameters.
 - *q* power of two.
 - Ring or non-ring.
 - Any security level.
 - Always, great performance.
- nRound2:
 - Specialized parameter set to support NTT.
 - Chooses prime q.

Conclusions & Remarks

- Different applications have different security/performance needs.
- Round2 is an efficient & scalable scheme that fits needs of different applications.

- Lattice-based proposals should be compared based on same methodology to give security estimates.
- Explicit failure probability target required for comparing different proposals.
- Minimal KEM proposal by Mike Hamburg makes lots of sense.

Questions?

Thank you