KU LEUVEN

SABER: Module-LWR based KEM
 J. P. D'Anvers A. Karmakar S. S. Roy F. Vercauteren imec - COSIC

- Setup: modulus $q \in \mathbb{Z}$, dimension l
- Setup: modulus $q \in \mathbb{Z}$, dimension l
- LWE: samples of the form

$$
\left(\boldsymbol{a}, b=\boldsymbol{a}^{T} \boldsymbol{s}+e\right) \in \mathbb{Z}_{q}^{l \times 1} \times \mathbb{Z}_{q}
$$

- $a \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{l \times 1}\right)$, uniform random for each sample
- secret vector $s \in \mathbb{Z}_{q}^{l \times 1}$ fixed for all samples
- $e \leftarrow \chi\left(\mathbb{Z}_{q}\right)$ small error
- Setup: modulus $q \in \mathbb{Z}$, dimension l
- LWE: samples of the form

$$
\left(\boldsymbol{a}, b=\boldsymbol{a}^{T} \boldsymbol{s}+e\right) \in \mathbb{Z}_{q}^{l \times 1} \times \mathbb{Z}_{q}
$$

- $a \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{l \times 1}\right)$, uniform random for each sample
- secret vector $s \in \mathbb{Z}_{q}^{l \times 1}$ fixed for all samples
- $e \leftarrow \chi\left(\mathbb{Z}_{q}\right)$ small error
- LWR: LWE with deterministic noise due to scaling and rounding

$$
\left(\boldsymbol{a}, b=\left\lfloor\frac{p}{q}\left(\boldsymbol{a}^{T} \boldsymbol{s}\right)\right\rceil\right) \in \mathbb{Z}_{q}^{l \times 1} \times \mathbb{Z}_{p}
$$

- q / p determines inherent noise
- Replace \mathbb{Z}_{q} by larger ring $R_{q}=\mathbb{Z}_{q}[X] /(f(X))$
- Dimension l is now product of module rank k and $\operatorname{deg}(f)$

LWE	Module-LWE
$l=768$	$k=3$ and $f(X)=x^{256}+1$
$\boldsymbol{a}^{T}=\left[a_{0}, a_{1}, \ldots, a_{767}\right]$	$\boldsymbol{a}^{T}=\left[\tilde{a}_{0}, \tilde{a}_{1}, \tilde{a}_{2}\right], \tilde{a}_{i} \in R_{q}$
$\boldsymbol{s}^{T}=\left[s_{0}, s_{1}, \ldots, s_{767}\right]$	$\boldsymbol{s}^{T}=\left[\tilde{s}_{0}, \tilde{s}_{1}, \tilde{s}_{2}\right], \tilde{s}_{i} \in R_{q}$
$b=\boldsymbol{a}^{T} \boldsymbol{s}+e \in \mathbb{Z}_{q}$	$\tilde{b}=\boldsymbol{a}^{T} \boldsymbol{s}+\tilde{e} \in R_{q}$

- Module-LWR: scaling and rounding coefficient-wise
- Simplicity: moduli $p \mid q$ are powers of 2
\oplus all security levels $p=2^{10}$ and $q=2^{13}$
\oplus easy sampling
\oplus no modular arithmetic
\oplus easy rounding $=$ add constant and chop
\oplus scaling is uniform
\ominus no NTT for fast multiplication
\oplus Toom-Cook: division by 8 , so work mod 2^{16} to multiply
- Simplicity: moduli $p \mid q$ are powers of 2
\oplus all security levels $p=2^{10}$ and $q=2^{13}$
\oplus easy sampling
\oplus no modular arithmetic
\oplus easy rounding $=$ add constant and chop
\oplus scaling is uniform
\ominus no NTT for fast multiplication
\oplus Toom-Cook: division by 8 , so work mod 2^{16} to multiply
- Only one polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{256}+1\right)$ with $q=2^{13}$
- Simplicity: moduli $p \mid q$ are powers of 2
\oplus all security levels $p=2^{10}$ and $q=2^{13}$
\oplus easy sampling
\oplus no modular arithmetic
\oplus easy rounding $=$ add constant and chop
\oplus scaling is uniform
\ominus no NTT for fast multiplication
\oplus Toom-Cook: division by 8 , so work $\bmod 2^{16}$ to multiply
- Only one polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{256}+1\right)$ with $q=2^{13}$
- Rank of module $2,3,4$ depending on security level
- Simplicity: moduli $p \mid q$ are powers of 2
\oplus all security levels $p=2^{10}$ and $q=2^{13}$
\oplus easy sampling
\oplus no modular arithmetic
\oplus easy rounding $=$ add constant and chop
\oplus scaling is uniform
\ominus no NTT for fast multiplication
\oplus Toom-Cook: division by 8 , so work mod 2^{16} to multiply
- Only one polynomial ring $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{256}+1\right)$ with $q=2^{13}$
- Rank of module $2,3,4$ depending on security level
- Secrets sampled from centered binomial distribution β_{μ}
- Sample easy as $\sum_{i=1}^{\mu} a_{i}-\sum_{i=1}^{\mu} b_{i}$ with $a_{i}, b_{i} \in\{0,1\}$

SABER Module-LWR Key Agreement

Alice
A = gen(seed_A)
b_{1}
b_{2}

$b_{3}$$|=|$| a_{1} | a_{2} | a_{3} | s_{1} |
| :--- | :--- | :--- | :--- |
| a_{4} | a_{5} | a_{6} | s_{2} |
| a_{7} | a_{8} | a_{9} | s_{3} |

$$
k=\left.\underline{b}_{1}^{\prime} b_{2}^{\prime}{ }_{2} b_{3}^{\prime}\right|_{\substack{s_{1} \\ s_{2} \\ s_{2} \\ s_{3}}} ^{\stackrel{\text { seed_A, } b_{1}, b_{2}, b_{3}}{b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}{ }_{3}}}
$$

Bob

$$
A^{\top}=\text { gen }(\text { seed_A })^{\top}
$$

$$
\begin{aligned}
& b_{1}^{\prime} \\
& b_{1}^{\prime} \\
& b_{2}^{\prime} \\
& b_{3}
\end{aligned}=\left[\begin{array}{ccc|c}
a_{1} & a_{4} & a_{7} & s_{1}^{\prime} \\
a_{2} & a_{5} & a_{8} & s_{1}^{\prime} \\
a_{3} & a_{6} & a_{9} & s_{3}^{\prime}
\end{array}\right]
$$

$$
k^{\prime}=s_{1}^{\prime} s^{\prime}{ }_{2} s^{\prime}{ }_{3} \begin{aligned}
& b_{1} \\
& b_{2} \\
& b_{3}
\end{aligned}
$$

Fix up difference using reconciliation info

- Equivalent of standard Regev-type LWE encryption
- Equivalent of standard Regev-type LWE encryption
- KeyGen:
- $\operatorname{seed}_{A} \leftarrow \mathcal{U}\left(\{0,1\}^{256}\right), A \leftarrow \operatorname{gen}\left(\operatorname{seed}_{A}\right) \in R_{q}^{k \times k}$
- $s \leftarrow \beta_{\mu}\left(R_{q}^{k \times 1}\right), \boldsymbol{b}=\operatorname{chop}(\boldsymbol{A}+\boldsymbol{h}, q, p) \in R_{p}^{k \times 1}$
- $p k:=\left(\boldsymbol{b}\right.$, seed $\left._{\boldsymbol{A}}\right), s k:=s$
- Equivalent of standard Regev-type LWE encryption
- KeyGen:
- $\operatorname{seed}_{A} \leftarrow \mathcal{U}\left(\{0,1\}^{256}\right), A \leftarrow \operatorname{gen}\left(\operatorname{seed}_{A}\right) \in R_{q}^{k \times k}$
- $s \leftarrow \beta_{\mu}\left(R_{q}^{k \times 1}\right), \boldsymbol{b}=\operatorname{chop}(\boldsymbol{A}+\boldsymbol{h}, q, p) \in R_{p}^{k \times 1}$
- $p k:=\left(\boldsymbol{b}\right.$, seed $\left._{\boldsymbol{A}}\right), s k:=s$
- Encrypt: $p k=\left(\boldsymbol{b}\right.$, seed $\left._{A}\right), m \in \mathcal{M} ; r$
- $A \leftarrow \operatorname{gen}\left(\operatorname{seed}_{A}\right) \in R_{q}^{k \times l}$
- $s^{\prime} \leftarrow \beta_{\mu}\left(R_{q}^{k \times 1}\right), \boldsymbol{b}^{\prime}=\operatorname{chop}\left(\boldsymbol{A}^{T} \boldsymbol{s}^{\prime}+\boldsymbol{h}, q, p\right) \in R_{p}^{k \times 1}$
- $v^{\prime}=\boldsymbol{b}^{T} \boldsymbol{s}^{\prime} \in R_{p}$
- $c_{m}=\operatorname{chop}\left(v^{\prime}+h_{1}+\frac{p}{2} m, p, 2 t\right) \in R_{2 t}$
- $c:=\left(c_{m}, \boldsymbol{b}^{\prime}\right)$
- Equivalent of standard Regev-type LWE encryption
- KeyGen:
- $\operatorname{seed}_{A} \leftarrow \mathcal{U}\left(\{0,1\}^{256}\right), A \leftarrow \operatorname{gen}\left(\operatorname{seed}_{A}\right) \in R_{q}^{k \times k}$
- $s \leftarrow \beta_{\mu}\left(R_{q}^{k \times 1}\right), \boldsymbol{b}=\operatorname{chop}(\boldsymbol{A}+\boldsymbol{h}, q, p) \in R_{p}^{k \times 1}$
- $p k:=\left(\boldsymbol{b}\right.$, seed $\left._{\boldsymbol{A}}\right), s k:=s$
- Encrypt: $p k=\left(\boldsymbol{b}\right.$, seed $\left._{A}\right), m \in \mathcal{M} ; r$
- $A \leftarrow \operatorname{gen}\left(\operatorname{seed}_{A}\right) \in R_{q}^{k \times l}$
- $s^{\prime} \leftarrow \beta_{\mu}\left(R_{q}^{k \times 1}\right), \boldsymbol{b}^{\prime}=\operatorname{chop}\left(\boldsymbol{A}^{T} \boldsymbol{s}^{\prime}+\boldsymbol{h}, q, p\right) \in R_{p}^{k \times 1}$
- $v^{\prime}=\boldsymbol{b}^{T} \boldsymbol{s}^{\prime} \in R_{p}$
- $c_{m}=\operatorname{chop}\left(v^{\prime}+h_{1}+\frac{p}{2} m, p, 2 t\right) \in R_{2 t}$
- $c:=\left(c_{m}, b^{\prime}\right)$
- Decrypt: $s k=\boldsymbol{s},\left(c_{m}, \boldsymbol{b}^{\prime}\right)$
- $v=\boldsymbol{b}^{\prime T} \boldsymbol{s} \in R_{p}$
- $m^{\prime}=\operatorname{chop}\left(v-\frac{p}{2 t} c_{m}+h_{2}, p, 2\right) \in R_{2}$
- KeyGen: same as before, but $s k$ includes $z \in \mathcal{U}\left(\{0,1\}^{256}\right)$
- Encaps: $p k=\left(\boldsymbol{b}\right.$, seed $\left._{\boldsymbol{A}}\right)$
- $m \leftarrow \mathcal{U}\left(\{0,1\}^{256}\right)$
- $(\hat{K}, r)=\mathcal{G}(p k, m)$
- $c=\operatorname{Saber} \cdot \operatorname{Enc}(p k, m ; r)$
- $K=\mathcal{H}(\hat{K}, c)$
- return (c, K)
- Decaps: $s k=(\boldsymbol{s}, z), p k=\left(\boldsymbol{b}\right.$, seed $\left._{A}\right), c$
- $m^{\prime}=\operatorname{Saber} . \operatorname{Dec}(\boldsymbol{s}, c)$
- $\left(\hat{K}^{\prime}, r^{\prime}\right)=\mathcal{G}\left(p k, m^{\prime}\right)$
- $c^{\prime}=\operatorname{Saber} \cdot \operatorname{Enc}\left(p k, m^{\prime} ; r^{\prime}\right)$
- if $c=c^{\prime}$ return $K=\mathcal{H}\left(\hat{K}^{\prime}, c\right)$
- else return $K=\mathcal{H}(z, c)$

SABER Module-LWR KEM Parameters

Common parameters: $q=2^{13}, p=2^{10}, f(x)=x^{256}+1$

cat	failure	attack	class.	quant.	pk (B)	sk $^{*}(\mathrm{~B})$	ct (B)	
LightSaber-KEM: $k=2, t=2^{2}, \mu=5$								
1	2^{-120}	primal dual	126 126	115 115	672	992	736	
Saber-KEM: $k=3, t=2^{3}, \mu=4$								
3	2^{-136}	primal dual	199 198	181 180	992	1344	1088	
FireSaber-KEM: $k=4, t=2^{5}, \mu=3$								
5		2^{-165}	primal dual	270 270	246 245	1312	1760	1472

* includes the public key

Platform: Intel(R) Core(TM) i7-6600U, 2.60 GHz with
hyper-threading, Turbo-Boost, and multi-core support disabled

Saber-KEM: C implementation

- Keygen: 190,420 cycles
- Encaps: 279,291 cycles
- Decaps: 306,346 cycles

Saber-KEM: AVX2 optimized (can be improved)

- Keygen: 101,138 cycles
- Encaps: 125,392 cycles
- Decaps: 129,138 cycles
\oplus Easy to implement: no modular reductions, no rounding, no rejection sampling, no random lifting
\oplus Modular structure and flexibility: only need to implement arithmetic in R_{q} with $q=2^{13}$ and $f(x)=x^{256}+1$
\oplus Less randomness since no error sampling as for LWE
\oplus Low bandwith: more compact than LWE-based schemes, even with compression
\oplus Easy to implement: no modular reductions, no rounding, no rejection sampling, no random lifting
\oplus Modular structure and flexibility: only need to implement arithmetic in R_{q} with $q=2^{13}$ and $f(x)=x^{256}+1$
\oplus Less randomness since no error sampling as for LWE
\oplus Low bandwith: more compact than LWE-based schemes, even with compression
\ominus No NTT, so resort to Karatsuba and Toom-Cook
\ominus No signature scheme

Simple A B E
R

Secure
Adaptable
\square
E
R

Secure Adaptable Belgian

Secure Adaptable Belgian

Efficient R

ecure

Adaptable
Belgian

Efficient Rounding Trumps* all...

* Research not funded by the Donald

