
SplitKey – A Threshold 
Cryptography Case Study 

Dr. Aivo Kalu – Security Engineer 

Maximiliaan van de Poll – Product Head 

March 13th 2019 



Estonia/Latvia/Lithuania so far had three widely used methods of authentication
ID-cards (smart-cards), Mobile-ID (SIM based), and one-time code cards
2014, EU PSD2 regulation came with strong authentication demand
There was a market need for new kind of approach

Company introduction and background 
R&D intensive ICT company in Estonia 

Research applied to practical security solutions since 1996 
Researched time stamping, PKI, digital signatures, multi-party computation, ... 
Developed and maintains Estonia’s X-Road (UXP), i-voting, Sharemind, ... 
Research and development projects funded mostly by Estonian government and 
companies, EU H2020, USA DARPA and NATO 
About 140 employees, 15% of them with PhDs 

March 13th 2019 2 



Company introduction and background 
R&D intensive ICT company in Estonia 

Research applied to practical security solutions since 1996 
Researched time stamping, PKI, digital signatures, multi-party computation, ... 
Developed and maintains Estonia’s X-Road (UXP), i-voting, Sharemind, ... 
Research and development projects funded mostly by Estonian government and 
companies, EU H2020, USA DARPA and NATO 
About 140 employees, 15% of them with PhDs 

Estonia/Latvia/Lithuania so far had three widely used methods of authentication 
ID-cards (smart-cards), Mobile-ID (SIM based), and one-time code cards 
2014, EU PSD2 regulation came with strong authentication demand 
There was a market need for new kind of approach 

March 13th 2019 2 



SplitKey digital signature scheme 

Software-based 2-out-of-2 threshold cryptosystem 
Based on: 

Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and 
public-key cryptosystems. (1978) 
Desmedt, Y., Fraenkel, Y.: Threshold cryptosystems. (1990) 
Damgard, I., Mikkelsen, G. L., Skeltved, T.: On the security of distributed multiprime 
RSA. (2015) 
Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual Smart Cards: How to sign 
with a password and a server. (2016) 

March 13th 2019 3 



Client’s private key sharing: d 0
1 Gen(k), d 0

1 + d 00
1 � d1 (mod '(n1))

Server’s key pair generation: (d2, e), (n2, e) Gen(k)
Composite public key generation: n = n1 · n2

Client’s part of the signature share: s 0
1 = md 0

1 (mod n1)
Server’s part of the signature share: s 00

1 = md 00
1 (mod n1)

Client’s signature share: s1 = s 0
1 · s 00

1 (mod n1)
Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 

 
 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

March 13th 2019 4 



Server’s key pair generation: (d2, e), (n2, e) Gen(k)
Composite public key generation: n = n1 · n2

Client’s part of the signature share: s 0
1 = md 0

1 (mod n1)
Server’s part of the signature share: s 00

1 = md 00
1 (mod n1)

Client’s signature share: s1 = s 0
1 · s 00

1 (mod n1)
Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

d1
0 + d 00Client’s private key sharing: d1

0 Gen(k), 1 � d1 (mod '(n1)) 

March 13th 2019 4 



Composite public key generation: n = n1 · n2

Client’s part of the signature share: s 0
1 = md 0

1 (mod n1)
Server’s part of the signature share: s 00

1 = md 00
1 (mod n1)

Client’s signature share: s1 = s 0
1 · s 00

1 (mod n1)
Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

Client’s private key sharing: d 0
1 Gen(k), d 0

1 + d 00
1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

March 13th 2019 4 



Client’s part of the signature share: s 0
1 = md 0

1 (mod n1)
Server’s part of the signature share: s 00

1 = md 00
1 (mod n1)

Client’s signature share: s1 = s 0
1 · s 00

1 (mod n1)
Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

1 + d 00Client’s private key sharing: d1
0 Gen(k), d 0

1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

Composite public key generation: n = n1 · n2 

March 13th 2019 4 



Client’s signature share: s1 = s 0
1 · s 00

1 (mod n1)
Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

d1
0 + d 00Client’s private key sharing: d1

0 Gen(k), 1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

Composite public key generation: n = n1 · n2 

Client’s part of the signature share: s 0 = md1 
0 (mod n1)1 

s 00 = md 00Server’s part of the signature share: 1 1 (mod n1) 

March 13th 2019 4 



Server’s signature share: s2 = md2 (mod n2)
Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

1 + d 00Client’s private key sharing: d1
0 Gen(k), d 0

1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

Composite public key generation: n = n1 · n2 

Client’s part of the signature share: s1
0 = md1 

0 (mod n1) 

s 00 = md 00Server’s part of the signature share: 1 1 (mod n1) 

s 00Client’s signature share: s1 = s1
0 · 1 (mod n1) 

March 13th 2019 4 



Composite signature: s = CRTn1,n2(s1, s2)

 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

d1
0 + d 00Client’s private key sharing: d1

0 Gen(k), 1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

Composite public key generation: n = n1 · n2 

Client’s part of the signature share: s 0 = md1 
0 (mod n1)1 

s 00 = md 00Server’s part of the signature share: 1 1 (mod n1) 

s 00Client’s signature share: s1 = s1
0 · 1 (mod n1) 

Server’s signature share: s2 = md2 (mod n2) 

March 13th 2019 4 



 
 

 

SplitKey key pair generation and signing operation 

Client’s key pair generation: (d1, e), (n1, e) Gen(k) 

1 + d 00Client’s private key sharing: d1
0 Gen(k), d 0

1 � d1 (mod '(n1)) 

Server’s key pair generation: (d2, e), (n2, e) Gen(k) 

Composite public key generation: n = n1 · n2 

Client’s part of the signature share: s 0 = md1 
0 (mod n1)1 

s 00 = md 00Server’s part of the signature share: 1 1 (mod n1) 

s 00Client’s signature share: s1 = s1
0 · 1 (mod n1) 

Server’s signature share: s2 = md2 (mod n2) 

Composite signature: s = CRTn1,n2 (s1, s2) 

March 13th 2019 4 



tex shows how much more RSA exponentiation operation is slower than AES
encryption operation, experimentally measured to be about 213

Security reduction to the RSA 

If RSA is S-secure against existential forgeries via adaptive chosen message attack, 
Sthen the composite signature is about tex 

-secure against the same attack, where tex 

is the time for one modular exponentiation 

March 13th 2019 5 



Security reduction to the RSA 

If RSA is S-secure against existential forgeries via adaptive chosen message attack, 
then the composite signature is about S -secure against the same attack, where textex
is the time for one modular exponentiation 
tex shows how much more RSA exponentiation operation is slower than AES 
encryption operation, experimentally measured to be about 213 

March 13th 2019 5 



Security reduction to the RSA 

If RSA is S-secure against existential forgeries via adaptive chosen message attack, 
then the composite signature is about S -secure against the same attack, where textex
is the time for one modular exponentiation 
tex shows how much more RSA exponentiation operation is slower than AES 
encryption operation, experimentally measured to be about 213 

Security strength 
(bits) 

Symmetric key 
algorithms 

RSA modulus n 
(bits) 

SplitKey composite modulus 
n1n2 (bits) 

112 3TDEA 2048 6144 
128 AES-128 3072 8192 
192 AES-192 7680 16384 

March 13th 2019 5 



Evaluation lab: TÜViT in Germany
Consultant lab: CCLabs in Hungary
Evaluation process started in the beginning of 2017 and fnished in the end of 2018
Evaluation assurance level for server-side component: EAL4 + AVA VAN.5
Evaluation assurance level for client-side component: EAL2

eIDAS QSCD/Common Criteria evaluation 

Based on the eIDAS regulation. 
Old Secure Signature Creation Device PP: prEN 14169-2:2012 
Draft Server Signing PP: prEN 419 241-2 

March 13th 2019 6 



eIDAS QSCD/Common Criteria evaluation 

Based on the eIDAS regulation. 
Old Secure Signature Creation Device PP: prEN 14169-2:2012 
Draft Server Signing PP: prEN 419 241-2 

Evaluation lab: TÜViT in Germany 
Consultant lab: CCLabs in Hungary 
Evaluation process started in the beginning of 2017 and fnished in the end of 2018 
Evaluation assurance level for server-side component: EAL4 + AVA VAN.5 
Evaluation assurance level for client-side component: EAL2 

March 13th 2019 6 





Covered threats in eIDAS QSCD 
Signer enrolment: Enrolment Forgery, Random Guessable, PubKey Forgery, MITM 
Signing process: PIN Guessing, Authentication Forgery, Access Control ByPass, 
Replay, MITM, Cloning, Tampering 
Cryptographic: Signature Forgery, Hash Forgery 
Other: Unauthorized System Access, Audit Log Forgery 

March 13th 2019 8 



Reduced threats, because of applied TC 

Signer enrolment: Enrolment Forgery, Random Guessable, PubKey Forgery, MITM 
Signing process: PIN Guessing, Authentication Forgery, Access Control ByPass, 
Replay, MITM, Cloning, Tampering 
Cryptographic: Signature Forgery, Hash Forgery 
Other: Unauthorized System Access, Audit Log Forgery 

March 13th 2019 9 



Policy security requirements for eIDAS QSCD 

Private key: Randomness, Confdentiality, Sole Control to Signer 
Signing process: Hash Integrity 
Cryptographic: Cryptographically Secure Signature Scheme 
Organisational: Qualifed Trust Service Provider 

March 13th 2019 10 



Fulflled requirements, because of applied TC 

Private key: Randomness, Confdentiality, Sole Control to Signer 
Signing process: Hash Integrity 
Cryptographic: Cryptographically Secure Signature Scheme 
Organisational: Qualifed Trust Service Provider 

March 13th 2019 11 



Used by online banking, retail, telcos,
government, etc.
SplitKey was originally developed for the
Smart-ID service, now spun o˙ to independent
product line

Smart-ID – A commercial service with SplitKey 

Legally compliant digital signature (eIDAS) 
and strong authentication service (PSD2) in 
Europe 
Developed and operated by SK Identity 
Solutions AS, a private company in Estonia. 

March 13th 2019 12 



SplitKey was originally developed for the
Smart-ID service, now spun o˙ to independent
product line

Smart-ID – A commercial service with SplitKey 

Legally compliant digital signature (eIDAS) 
and strong authentication service (PSD2) in 
Europe 
Developed and operated by SK Identity 
Solutions AS, a private company in Estonia. 
Used by online banking, retail, telcos, 
government, etc. 

March 13th 2019 12 



Smart-ID – A commercial service with SplitKey 

Legally compliant digital signature (eIDAS) 
and strong authentication service (PSD2) in 
Europe 
Developed and operated by SK Identity 
Solutions AS, a private company in Estonia. 
Used by online banking, retail, telcos, 
government, etc. 
SplitKey was originally developed for the 
Smart-ID service, now spun o˙ to independent 
product line 

March 13th 2019 12 



Smart-ID authentication fow 
Authentication is started from the RP’s webpage or RP’s app, custom REST API. 
OpenID Connect API supported, but not widely used. 

March 13th 2019 13 



Smart-ID uptake since the launch 



Smart-ID uptake and usage 

1.88 M active users in total 
35% of adult population in Estonia, Latvia, and Lithuania 
43% - 49% of smartphone users 
30 M transactions per month 

March 13th 2019 15 



to create an eÿcient digital signature scheme
ease security evaluation and reduce risks
to reach about 2 million users in production within 3 years

Questions?

Summary 

Successful example of how to use threshold cryptography: 

March 13th 2019 16 



ease security evaluation and reduce risks
to reach about 2 million users in production within 3 years

Questions?

Summary 

Successful example of how to use threshold cryptography: 

to create an eÿcient digital signature scheme 

March 13th 2019 16 



to reach about 2 million users in production within 3 years

Questions?

Summary 

Successful example of how to use threshold cryptography: 

to create an eÿcient digital signature scheme 
ease security evaluation and reduce risks 

March 13th 2019 16 



Questions?

Summary 

Successful example of how to use threshold cryptography: 

to create an eÿcient digital signature scheme 
ease security evaluation and reduce risks 
to reach about 2 million users in production within 3 years 

March 13th 2019 16 



Summary 

Successful example of how to use threshold cryptography: 

to create an eÿcient digital signature scheme 
ease security evaluation and reduce risks 
to reach about 2 million users in production within 3 years 

Questions? 

March 13th 2019 16 




