
Sugumar Govindarajan

Security Architect, Intel Server BIOS

John Loucaides

Security Researcher, Intel Product Security Incident Response Team

Contributions from Aaron Frinzell, Intel Server BIOS

Legal information
Intel technologies, features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies

depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availabili ty, functionality, or effectiveness of

any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User

and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.

Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current

characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel vPro, Look Inside., the Look Inside. logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation.

Let’s set the stage

SMM / BIOS

CPU

App

OS

App

VM

App

OS

App

VM

VMM / Hypervisor

Memory Peripherals

Firmware

Hardware

Platform

P
ri

v
il

e
g

e
+

+

BIOS & OS/VMM share access,
but not trust
UEFI + PI SMM

Hypervisor can
grant VM direct
hardware access

DMA

A specific Peripheral may have
its own processor, and its own
firmware, which is undetectable
by host CPU/OS.

Where are we (system firmware)?

What is UEFI?

UEFI 2.4 specifies how firmware boots OS loader

UEFI’s Platform Initialization (PI) 1.3 Architecture

specifies how Driver Execution Environment

(DXE) Drivers and Pre-EFI Initialization (PEI)

Modules (PEIMs) initialize SI and the platform

DXE is preferred UEFI Implementation

PEIMs, UEFI and DXE drivers implement

networking, Update, other security features

Hardware

OS
(UEFI or
Today’s)

Pre-boot
Tools

UEFI Specification

Silicon
Component

Modules

Platform

Drivers

U
E

F
I

P
I

S
c
o

p
e

 -
G

re
e

n
 “

H
”

PEI/DXE PI Foundation

Modular components

Network

Hardware

Firmware

OS

Drivers

Libraries

Application

GUI

Human User

Full system stack

(user -> hardware)

What’s in UEFI

UEFI [Compliant] Firmware

SEC

Pre-EFI Init

(PEI)

Driver Exec

Env (DXE)

Boot Dev

Select (BDS)

Runtime / OS

S-CRTM; Init caches/MTRRs; Cache-as-RAM (NEM); Recovery; TPM Init

S-CRTM: Measure DXE/BDS

Early CPU/PCH Init

Memory (DIMMs, DRAM) Init, SMM Init

Continue initialization of platform & devices

Enum FV, dispatch drivers (network, I/O, service..)

Produce Boot and Runtime Services

Boot Manager (Select Boot Device)

EFI Shell/Apps; OS Boot Loader(s)

ExitBootServices. Minimal UEFI services (Variable)

ACPI, UEFI SystemTable, SMBIOS table

CPU Reset

No one expects the BIOS Inquisition!!

The hole is also greater… than expected…

• 37 unique publicly disclosed issues in the last ~2 years (by only a handful of

researchers)

• Multiple of these are really classes of issues with many instances in

affected firmware products (SMI input pointers, SMI “call-outs”, insecure use

of UEFI variables, etc.)

• Many issues affect multiple vendors at once (S3 boot script, BIOS write

protections, UEFI variables, SMI call-outs, SMI input pointers)

• Issues may need to be checked separately in every product

• And updating firmware is not easy

9

10

Start with a complicated enabling process…

“The Long and Winding Road” (to your system)

Reference Tree

tianocore.org

OEM BIOS

New product

IBV

Existing product

ODM BIOS
New

product
Existing ODM

product

Commercial product in the field

Consumer product in the field

End users

updating?

ODMs updating?

Time

Open Source

All

Intel

OEM

IBV

ODM

Some (quick) Examples

1. S3 Boot Script (Sleep/Resume) Issues

2. SMI Handler Call-Outs

3. Bad Pointer Input SMI Vulnerabilities

12

Do BIOS Attacks Require Kernel Privileges?

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

OS Kernel

OS Driver

Malicious App
A matter of finding

legitimate signed kernel

driver which can be used

on behalf of user-mode

exploit as a confused

deputy.

RWEverything driver

signed for 64bit Windows

(co-discovered with other

researchers)

A quick summary of many ongoing efforts to improve system firmware security…

14

Parts to Consider…

 Finding Issues

– Vulnerability Research

– Security Development Lifecycle activities

– Testing (CHIPSEC and more…)

 Hardening

– Development processes and practices

– Threat Model and Mitigations

 Community & Ecosystem Engagement

– UEFI Security Response Team

– Intel and Tianocore Advisories

15

16

Intel is looking for (and finding) issues…

2013

 Secure Boot Bypass Research (BH 2013)

2014

 Tianocore issues (see http://tianocore.org/security)

 Multiple Secure Boot Bypasses (independent discovery by other researchers, co-presented at CanSecWest 2014)

 Summary of BIOS Attacks (DEFCON 22, Ekoparty 10, Ruxcon 2014)

 S3 Boot Script Vulnerabilities (independent discovery by external researchers, presented by Intel at Recon 2015)

2015

 SMM Bad Pointer Input Vulnerabilities (CanSecWest 2015)

 LTE Modem Security (DEFCON 23)

 Attacking VMMs through Firmware (BH 2015)

17

https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
http://tianocore.org/security
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Bulygin-Bazhaniul-Furtak-Loucaides/DEFCON-22-Bulygin-Bazhaniul-Furtak-Loucaides-Summary-of-attacks-against-BIOS-UPDATED.pdf
http://www.ekoparty.org/charlas-2014.php?l=en&a=2013&c=cyan&m=142
https://ruxcon.org.au/speakers/#John Loucaides
http://www.intelsecurity.com/advanced-threat-research/content/ANewClassOfVulnInSMIHandlers_csw2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/ANewClassOfVulnInSMIHandlers_csw2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/Intel_DC23_SPLTE.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf

CHIPSEC

Raising the Bar for Platform Security

*Other names and brands may be claimed as the property of others.

Use CHIPSEC for access HW resources
chipsec_util msr 0x200

chipsec_util mem 0x0 0x41E 0x20

chipsec_util pci enumerate

chipsec_util pci 0x0 0x1F 0x0 0xDC byte

chipsec_util io 0x61 byte

chipsec_util mmcfg 0 0x1F 0 0xDC 1 0x1

chipsec_util mmio list

chipsec_util cmos dump

chipsec_util ucode id

chipsec_util smi 0x01 0xFF

chipsec_util idt 0

chipsec_util cpuid 1

chipsec_util spi info

chipsec_util spi read 0x700000 0x100000 bios.bin

chipsec_util decode spi.bin

chipsec_util uefi var-list

chipsec_util spd dump

chipsec_util acpi list

Known Threats and CHIPSEC modules
Chipsec Module Publication
Modules/common/ bios_ts.py “BIOS Boot Hijacking and VMware Vulnerabilities Digging” - Sun Bing

Modules/common/ bios_kbrd_buffer.py DEFCON 16: “Bypassing Pre-boot Authentication Passwords by Instrumenting the BIOS

Keyboard Buffer” – Jonathan Brossard

Modules/common/bios_smi.py “Setup for Failure: Defeating SecureBoot” – Corey Kallenberg, Xeno Kovah, John Butterworth,

Sam Cornwell

Modules/remap Preventing & Detecting Xen Hypervisor Subversions – Joanna Rutkowska & Rafal Wojtczuk

Modules/smm_dma Programmed I/O accesses: a threat to Virtual Machine Monitors? – Lioc Duflot & Laurent Absil

Modules/common/ bios_wp.py Black Hat USA 2013 “BIOS Security” – MITRE (Kovah, Butterworth, Kallenberg)

NoSuchCon 2013 “BIOS Chronomancy: Fixing the Static Root of Trust for Measurement” –

MITRE (Kovah, Butterworth, Kallenberg)

Modules/common/ smm.py CanSecWest 2006 “Security Issues Related to Pentium System Management Mode” – Duflot

Modules/common/spi_desc.py Parsing of SPI descriptor access permissions is implemented in “ich_descriptors_tool” which is

part of open source flashrom.

Modules/common/ smrr.py “Attacking SMM Memory via Intel CPU Cache Poisoning” – ITL (Rutkowska, Wojtczuk)

“Getting into the SMRAM: SMM Reloaded” – Duflot, Levillain, Morin, Grumelard

Modules/common/ spi_lock.py FLOCKDN is in flashrom and MITRE's Copernicus

Modules/common/secureboot/keys.py UEFI 2.4 spec Section 28

Modules/common/secureboot/variables.py UEFI 2.4 spec Section 28

Modules/common/uefi/access_uefispec.py UEFI spec – Table 11 “Global Variables”

Modules/tools/smm/smm_ptr.py “A New Class of Vulnerability in SMI Handlers of BIOS/UEFI Firmware” Intel ATR

http://powerofcommunity.net/poc2007/sunbing.pdf
http://www.slideshare.net/endrazine/defcon-16-bypassing-preboot-authentication-passwords-by-instrumenting-the-bios-keyboard-buffer-practical-low-level-attacks-against-x86-preboot-authentication-software
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/pacsec2007-duflot-papier.pdf
https://www.blackhat.com/us-13/briefings.html#Butterworth
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.flashrom.org/
http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
file:///C:/Users/jjloucai/Projects/SVN/chipsec/INTERNAL/flashrom.org
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://uefi.org/
http://uefi.org/
http://uefi.org/
https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf

Some (quick) Examples

Check BIOS Write Protection

S3 Boot Script (Sleep/Resume) Issues

Bad Pointer Input SMI Vulnerabilities

22

Symbolic Execution for BIOS Security

Presented at WOOT’15

23

Symbolic execution for code coverage and bug hunting

– Coverage: minimal test cases inducing maximal code coverage

– Bugs: test cases inducing common program vulnerabilities

f(x,y)

x=1, y=0 x=2, y=1 x=3, y=4

https://www.usenix.org/conference/woot15/workshop-program/presentation/bazhaniuk

Use Open Source HW, SW and Tools

HW: Minnow Board MAX Open hardware platform

64-bit Intel® Atom™ SoC E38xx Series

http://firmware.intel.com/projects

SW: Minnow Board MAX UEFI Open Source (EDKII project)

http://tianocore.sourceforge.net/wiki/EDK2

Builds using Microsoft Visual Studios or GNU C Compiler

Tools: S2E

http://s2e.epfl.ch/

http://firmware.intel.com/projects
http://tianocore.sourceforge.net/wiki/EDK2
http://s2e.epfl.ch/
http://www.tianocore.org/
http://www.tianocore.org/

S2E on SMRAM Image

SMRAM SMRAM

image

Boot

on board

Dump

to disk

Run S2E

on QEMU

SMRAM

Main()

{

}

Replay

on board

SMRAM

Main()

{

}

Test

cases

Error

Messages

Code

Coverage

SmmMemoryChecker: address 0xffffffff8172eef4 out of range at pc 0x7b3ec435

26

Development Process

27

Architecture

• Threat Model

• Security Assets,
Threats, Objectives,
and Requirements

Design

• Design Reviews

Implementation

• Code Review

• Static Analysis

• Test Plan

Deployment

• Survivability Plan

• Incident Response

Security VT 5-point Agenda

1. Incident Response

2. Security Requirements
 Features, technologies, defining secure configuration

3. Secure Design
 Automate discovery of code-of-concern using Static Analysis Tools

4. Secure Code
 Custom checkers, go beyond standard plug-ins

5. Security Validation
 Create test content

 Test coverage metrics

28

Know Your Deliverable

29

• Static Analysis into Continuous Integration

• Add Custom Checkers

• Make static analysis do secure design analysis

• Doxygen tags

~~~

• Stay away from project management 

– just feed the issues 

– impact projects metrics 

• Define phases of quality goals

• Define security issues closure as milestone exit criteria

30

Twist the Tools, Sync with Process



31

Hardware Security Testability Interface

Initially…

• Mechanism to help avoid misconfiguration of Security Features

• Provide greater assurance of the Security configuration on all deployed 

platforms - Even after configuration changes by IT and/or end-users

• Programmatic method for an Operating System to query security 

configuration

Eventually…

• Establish trust between platform, the Intel-provided test module, and the 

result published for the Operating System



32

HSTI Solution Overview

Collaboratively defined API released 

externally by Microsoft

 Built upon the UEFI 2.4 Adapter 

Information Protocol

 https://msdn.microsoft.com/en-

us/library/windows/hardware/dn879006.

aspx

 Defined a variety of Test Categories to 

be implemented by either the Silicon 

Vendor, IBV, or OEM

IHV

1 Hardware Rooted Boot Integrity

2 Boot Firmware Media Protection

3 Signed Firmware Update

4 Measured Boot Enforcement

5 Integrated Device DMA Protection

6 Debug Mode Disabled Verification

7 Secure CPU Configuration

8 Secure System Agent Configuration

9 Secure Memory Configuration

10 Secure Integrated Graphics Configuration

11 Secure I/O Configuration

IBV/OEM

1 Firmware Trust Continuation Crypto Strength

2 Test Key Verification

3 Firmware Version Rollback Protection

4 SecureBoot Bypass Checking

5 External Device DMA Protection

6 MOR Support

https://msdn.microsoft.com/en-us/library/windows/hardware/dn879006.aspx


33

BIOS/FW 
Attack 

Surface

SPI Flash 
Protection

SMRAM 
Protection

Hardware

Config.

SMI 
Handlers

Secure 
Boot

BIOS 
Settings 

(NVRAM, 
Variables)

BIOS 
Update

…



DMA Protection

• SMRAM has to be protected from DMA Attack

• Protection from inbound DMA access is guaranteed by 
programming TSEG range

• When BIOS doesn’t lock down TSEG range configuration, 
malware can move TSEG outside of where actual SMRAM is

• Then program one of DMA capable devices (e.g. GPU device) 
or Graphics Aperture to access SMRAM

• Programmed I/O accesses: a threat to Virtual Machine 
Monitors?

• System Management Mode Design and Security Issues

• BIOS has to lock down configuration required to define range 
protecting SMRAM from inbound DMA access (e.g. TSEG 
range)

•chipsec_main --module smm_dma

DMA/GFx Aperture Attacks Against SMRAM



Software Access to SMRAM:

4GB

SMRAM

CPU software 

access to SMRAM 

is blocked by 

SMRR

SMRR

CPU



DMA Access to SMRAM:

4GB

SMRAM

DMA access to 

SMRAM is blocked 

due to TSEG 

covering SMRAM

TSEG



DMA Protection of SMRAM – Client 

37



DMA Access to SMRAM:

4GB

SMRAM

DMA access to 

SMRAM is blocked 

due to TSEG 

covering SMRAM

TSEGMB

Gfx

Base



Servers are People (computers) too 

Architectural differences

 Memory

 Multi-processor

Register implementation differences

Feature support differences

Mitigation differences



DMA Access to SMRAM:

4GB

SMRAM

DMA access to 

SMRAM is blocked 

due to TSEG 

covering SMRAM

TSEG Base

TSEG.Limit



DMA Protection of SMRAM – Server



GENPROTRANGE

TSEG Protects SMRAM (along with SMRR)…

Generic Protected Memory Range

Using GENPROTRANGE, BIOS can protect other address ranges.

 Base

 Limit

 Base > Limit = disabled



GENPROTRANGE Base and Limit



DMA Access to SMRAM: 

Genprotrange[1].Base

Genprotrange[1].Limit

Genprotrange[0].Base

Genprotrange[0].Limit



After all, we’re in this together…

45



Response Process

1. Issue Discovery

 secure@intel.com security@uefi.org (other security teams)

2. Investigation and Disposition of Impacts

 PSIRT BIOS Core, representing BIOS leads in every segment

3. Mitigation Development and Validation

4. Non-public Communication for Mitigation Development/Deployment

 Technical Advisories

 USRT Coordination (http://uefi.org/security) 

5. Public Communication

 https://security-center.intel.com

 http://tianocore.org/security

46

mailto:secure@intel.com
mailto:security@uefi.org
http://uefi.org/security
https://security-center.intel.com/
http://tianocore.org/security


CHIPSEC Information

On the web: https://github.com/chipsec/chipsec

Email List: https://lists.01.org/mailman/listinfo/chipsec

 Gaining activity/support from community

 External interest in

– Deployable drivers

– Supporting other platforms/architectures

– Greater coverage of issues

– Increased user-friendliness

Contact: chipsec@intel.com

47

https://github.com/chipsec/chipsec
https://lists.01.org/mailman/listinfo/chipsec
mailto:chipsec@intel.com


Putting it together…

Client

Server

SoC

Open Source

Other Firmware Developers

48

Actionable Work

Community

Hardening

Finding 
IssuesFinding 

Issues

•Research

•Testing

Hardening

•People

•Process

•Tools

Community

•Advisories

•USRT



Putting it together…

Client

Server

SoC

Open Source

Other Firmware Developers

49

Actionable Work

Community

Hardening

Finding 
IssuesFinding 

Issues

•Research

•Testing

Hardening

•People

•Process

•Tools

Community

•Advisories

•USRT



How this applies to YOU…

 Look for Issues and Mitigations

– Vulnerability Research 

– Platform-specific assessments 

– Next level of detail for concepts like “non-bypassible” in 800-147

– Could include testing such as with the CHIPSEC Framework

 Harden the Implementation

– Consider both development practices and response/update

– Consider technologies like secure boot, 

 Engage the Community

– UEFI Forum (USRT & USST)

50

https://github.com/chipsec/chipsec
uefi.org/security


Please visit Intel  in the Show Floor Area in Booth 100 



Example 1

52



Why “S3 Resume Boot Script”?
To speed up S3 resume, required HW configuration actions are written to an “S3 

Resume Boot Script” by DXE drivers instead of running all configuration actions 

normally performed during boot



S3 Boot Script is a Sequence of Platform Dependent 

Opcodes

00 00 00 00 21 00 00 00 02 00 0f 01 00 00 00 00

00 00 c0 fe 00 00 00 00 01 00 00 00 00 00 00 00

00 01 00 00 00 24 00 00 00 02 02 0f 01 00 00 00

00 04 00 c0 fe 00 00 00 00 01 00 00 00 00 00 00

00 00 00 00 08 02 00 00 00 21 00 00 00 02 00 0f

01 00 00 00 00 00 00 c0 fe 00 00 00 00 01 00 00

00 00 00 00 00 10 03 00 00 00 24 00 00 00 02 02

..

01 00 00 00 00 00 00 00 f0 00 02 00 67 01 00 00

20 00 00 00 01 02 30 04 00 00 00 00 21 00 00 00

00 00 00 00 de ff ff ff 00 00 00 00 68 01 00 00

..

d3 d1 4b 4a 7e ff



Decoding Opcodes

# chipsec_util.py uefi s3bootscript

[000] Entry at offset 0x0000 (length = 0x21):

Data:

02 00 0f 01 00 00 00 00 00 00 c0 fe 00 00 00 00 

01 00 00 00 00 00 00 00 00                     

Decoded:

Opcode : S3_BOOTSCRIPT_MEM_WRITE (0x02)

Width  : 0x00 (1 bytes)

Address: 0xFEC00000

Count  : 0x1

Values : 0x00

..

[359] Entry at offset 0x2F2C (length = 0x20):

Data:

01 02 30 04 00 00 00 00 21 00 00 00 00 00 00 00

de ff ff ff 00 00 00 00

Decoded:

Opcode : S3_BOOTSCRIPT_IO_READ_WRITE (0x01)

Width  : 0x02 (4 bytes)

Address: 0x00000430

Value  : 0x00000021

Mask   : 0xFFFFFFDE



S3 Boot Script Opcodes

• I/O port write (0x00)

• I/O port read-modify-write (0x01)

• Memory write (0x02)

• Memory read-modify-write (0x03)

• PCIe configuration write (0x04)

• PCIe configuration read-modify-write 
(0x05)

• SMBus execute (0x06)

• Stall (0x07)

• Dispatch (0x08) / Dispatch2 (0x09)

• Information (0x0A)

• …



So what can go wrong with the script?

1. Address (pointer) to S3 boot script is not protected (eg. NV+RT+BS 

AcpiGlobalTable)

2. The S3 boot script itself is stored in memory (eg. ACPI NVS) accessible 

to the OS or DMA capable devices

3. The executable parsing and interpreting the S3 boot script is running out 

of unprotected memory

4. S3 boot script contains Dispatch (or Dispatch2) opcodes with entry-

points in unprotected memory

5. EFI firmware does not add S3 boot script opcodes which restore all 

required hardware locks and protections



BIOS protection is ON

PASSED: BIOS is write 

protected



Sleep well!



Oh wait…

FAILED: BIOS is NOT 

protected completely



Opcode restoring BIOS Write Protection has been modified

S3_BOOTSCRIPT_PCI_CONFIG_WRITE opcode in the S3 
boot script restored BIOS hardware write-protection in OFF 
state



There’s a script to detect these issues

# chipsec_main.py –m common.uefi.s3bootscript

[x][ ==========================================

[x][ Module: S3 Resume Boot-Script Protections

[x][ ==========================================

[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x00000000DA88A018

[!] S3 boot-script is not in SMRAM

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

[-] Found Dispatch opcode (offset 0x014E) with Entry-

Point: 0x00000000DA5C3260 : UNPROTECTED

[-] Entry-points of Dispatch opcodes in S3 boot-script are 

not in protected memory

[-] FAILED: S3 Boot Script and entry-points of Dispatch 

opcodes do not appear to be protected 



Protecting the S3 Boot Script 

1. Do not keep address (pointer) to S3 Boot Script table in unprotected non-volatile 
UEFI variable (ex. NV+RT+BS AcpiGlobalVariable)

2. Do not keep address (pointer) to S3 Boot Script table or to a structure containing 
address of the script in unprotected non-volatile UEFI variable (ex. NV+RT+BS 
AcpiGlobalVariable)

3. Do not save the S3 Boot Script table to memory accessible by the OS or DMA 
capable devices

4. Do not save the PEI executable that parses and executes the S3 Boot Script table 
and any other PEI executable(s) needed for S3 resume to memory accessible by 
the OS or DMA capable devices

5. Saving a pointer to the S3 boot script in a UEFI variable that is accessible by the 
OS or DMA capable devices

6. Review the S3 Boot Script for Dispatch opcodes and establish whether the target 
code is protected.



Example 2



Once upon a time…

• In 2009, SMI call-out vulnerabilities were discovered by Rafal Wojtczuk and 

Alex Tereshkin in EFI SMI handlers (Attacking Intel BIOS) and by Filip 

Wecherowski in legacy SMI (BIOS SMM Privilege Escalation Vulnerabilities)

• Also discussed by Loic Duflot in System Management Mode Design and 

Security Issues

• In 2015(!) researchers from LegbaCore found that many modern systems are 

still vulnerable to these issues How Many Million BIOS Would You Like To 

Infect (paper)

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.securityfocus.com/archive/1/505590
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf


These issues seem to come in packs

14 call-out vulnerabilities in one SMI 

handler!

BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590


Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB



SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

Code fetch

in SMM



SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload0F000:08070 = 

0xF8070 PA

Code fetch

in SMM



BIOS developers can easily detect call-outs

1. A “simple” HW debugger script to step on branches and 
verify that target address of the branch is within SMRAM

2. Enable SMM Code Access Check HW feature on pre-
production systems based on newer CPUs to weed out all 
“intended” code fetches outside of SMRAM from SMI drivers

3. NX based soft SMM Code Access Check patches by 
Phoenix look promising

http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015 Firmware - Securing SMM.pdf


Mitigating SMM Call-Outs

1. Don’t call any function outside of protected SMRAM

– Violates “No read down” rule of classical Biba integrity model

2. Enable SMM Code Access Check CPU protection

– Available starting in Haswell based CPUs

– Available if MSR_SMM_MCA_CAP[58] == 1

– When enabled, attempts to execute code not within the ranges defined by the SMRR while 

inside SMM result in a Machine Check Exception



Blocking Code Fetch Outside of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload0F000:08070 = 

0xF8070 PA

Code fetch

in SMM 

causes MC 

exception



Example 3



System Management Interrupt (SMI) Handlers

SMRR_PHYSBAS

E

SMRAM

0x00000000

0xFFFFFFFF

SMI 

handlers

SMM state 

save area

SMBASE + 8000h

SMBASE

SMBASE + FFFFh

SMRAM

SMBASE + FC00h



Pointer Arguments to SMI Handlers

Phys Memory

SMI Handlers in 
SMRAM

OS Memory

SMI Handler writes result to a buffer at address passed in RBX…

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

SMI handler structure

SMI



Pointer Vulnerabilities

Phys Memory

SMI Handlers in 
SMRAM

OS Memory

Exploit tricks SMI handler to write to an address inside SMRAM

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

Fake structure inside 

SMRAM

SMI



How does the attack work?

Phys Memory

SMI Handler

OS Memory

• CPU stores current value of SMBASE in SMM save state area on SMI 

and restores it on RSM

RAX (code)

RBX (pointer)

RCX (function)

SMI handler structure

SM

I

SMBASE

SMM State Save 

Area

Saved SMBASE value

SMI Entry Point 

(SMBASE + 

8000h)



How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit prepares fake SMRAM with fake SMI handler outside of SMRAM

Fake SMI handler

SMBASE

Saved SMBASE value SMM State Save 

Area

SMI Entry Point 

(SMBASE + 

8000h)



How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit triggers SMI w/ RBX pointing to saved SMBASE address in SMRAM

• SMI handler overwrites saved SMBASE on exploit’s behalf with address of fake SMI handler 

outside of SMRAM (e.g. 0 PA)

RAX (code)

RBX (pointer)

RCX (function)

SM

I

SMBASE

Fake SMI handler

Saved SMBASE value SMM State Save 

Area

SMI Entry Point 

(SMBASE + 

8000h)



How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit triggers another SMI

• CPU executes fake SMI handler at new entry point outside of original 

protected SMRAM because SMBASE location changed

SM

I

SMBASE
Fake SMI handler

Saved SMBASE value SMM State Save 

Area

New SMI Entry Point



How does the attack work?

Phys Memory

SMI Handler
(SMRAM is not protected)

OS Memory

• Fake SMI handler disables original SMRAM protection (disables SMRR)

• Then restores original SMBASE values to switch back to original SMRAM

SMBASE
Fake SMI handler

Original saved SMBASE 

value
SMM State Save 

Area

New SMI Entry Point



How does the attack work?

Phys Memory

SMI Handler

(SMRAM is not protected)

OS Memory

• The SMRAM is restored but not protected by HW anymore

• Any SMI handler may be installed/modified by malware

SMBASE

SMI Entry Point 

(SMBASE + 

8000h)



Input Pointers in EDKII: CommBuffer

 CommBuffer is a memory buffer used as a communication protocol 
between OS runtime and DXE SMI handlers

 Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI NVS 
memory accessible to OS

 Contents of CommBuffer are specific to SMI handler. Variable SMI 
handler read UEFI variable GUID, Name and Data from 
CommBuffer

Vulnerability Ref Affected Reported by

CommBuffer SMM Overwrite/Exposure (3 issues) Tianocore EDK2 Intel ATR

TOCTOU (race condition) Issue with CommBuffer (2 issues) Tianocore EDK2 Intel ATR

SMRAM Overwrite in Fault Tolerant Write SMI Handler (2 issues) Tianocore EDK2 Intel ATR

SMRAM Overwrite in SmmVariableHandler (2 issues) Tianocore EDK2 Intel ATR

http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download


Attacking CommBuffer Pointer

SecurityPkg/VariableAuthenticated/RuntimeDxe:

SmmVariableHandler (

...

SmmVariableFunctionHeader = (SMM_VARIABLE_COMMUNICATE_HEADER *)CommBuffer;

switch (SmmVariableFunctionHeader->Function) {

case SMM_VARIABLE_FUNCTION_GET_VARIABLE:

SmmVariableHeader = (SMM_VARIABLE_COMMUNICATE_ACCESS_VARIABLE *)

SmmVariableFunctionHeader->Data;

Status = VariableServiceGetVariable (

...

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);

VariableServiceGetVariable (

...

OUT VOID *Data

)

...

CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize); 

SMRAMCommBuffer



Mitigating CommBuffer Attack

 SMI Handlers often have multiple commands, calling a different 
function for each command and take command specific arguments 

 Note the calls to SmmIsBufferOutsideSmmValid. This checks for 
addresses to overlap with SMRAM range

SmiHandler() {

// check CommBuffer is outside SMRAM

if (!SmmIsBufferOutsideSmmValid(CommBuffer, Size)) {

return EFI_SUCCESS;

}

switch(command)

case 1: do_command1(CommBuffer);

case 2: do_command2(CommBuffer);

…
SMRAMCommBuffer



CommBuffer TOCTOU Issues

• SMI handler checks that it won’t access outside of CommBuffer

• What if SMI handler reads CommBuffer memory again after the check

• DMA engine (for example GFx) can modify contents of CommBuffer

InfoSize = .. + SmmVariableHeader->DataSize + SmmVariableHeader->NameSize;

if (InfoSize > *CommBufferSize - SMM_VARIABLE_COMMUNICATE_HEADER_SIZE) {

Status = VariableServiceGetVariable (

...

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);

VariableServiceGetVariable (

...

OUT VOID *Data

)

...

if (*DataSize >= VarDataSize) {

CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

Time of Check

Time of Use



Detecting Bad SMI Input Pointers

1. Allocate a buffer in physical memory

2. Set GP registers to address of allocated memory buffer

3. Invoke SW SMI

4. Check fill pattern

[x][ =======================================================================

[x][ Module: A tool to test SMI handlers for pointer validation vulnerabilies

[x][ =======================================================================

Usage: chipsec_main -m tools.smm.smm_ptr [ -a <fill_byte>,<size>,<config_file>,<address> ]



Detecting Bad SMI Input Pointers
[*] Configuration:

Byte to fill with             : 0x11

No of bytes to fill           : 0x500

SMI config file               : chipsec/modules/tools/smm/smm_config.ini

Default value of GP registers : 0x5A5A5A5A5A5A5A5A

Allocated physmem buffer      : 0x0000000071A20800 (passed in GP reg to SMI)

Second order buffer mode      : OFF

[*] Fuzzing SMI handlers defined in 'chipsec/modules/tools/smm/smm_config.ini'..

[*] Filling in 1280 bytes at PA 0x0000000071A20800 with ''..

[*] Sending SMI# 0x5A (data = 0x5A) SW_SMI_Name (swsmi_desc)..

RAX: 0x0000000071A20800 (AX will be overwritten with values of SW SMI ports B2/B3)

RBX: 0x0000000071A20800

RCX: 0x0000000071A20800

RDX: 0x0000000071A20800 (DX will be overwritten with 0x00B2)

RSI: 0x0000000071A20800

RDI: 0x0000000071A20800

Checking contents at PA 0x0000000071A20800..

[+] Contents at PA 0x0000000071A20800 have not changed



Validate input addresses before using them!

 Read pointer issues are also exploitable to expose SMRAM contents

 SMI handlers have to validate each address/pointer (+ offsets) they receive from OS prior to 

reading from or writing to it including returning status/error codes

– E.g. use/implement a function which validates address + size for overlap with SMRAM similar to 
SmmIsBufferOutsideSmmValid in EDKII


