
1

Threshold Cryptography:

Ready for Prime Time?

Hugo Krawczyk, IBM

NIST Threshold Cryptography Workshop 2019

3-11-2019

(with thanks to many colleagues and collaborators –

see references at the end)

Threshold Cryptography:

Ready for Prime Time?

◼ I would say YES!

 Huge increase in quantity and sensitivity of stored data

 Cloud storage and computing as the prevalent paradigm

 Huge key management operations (see Campagna’s AWS talk at RWC’19)

 Privacy concerns, awareness, regulations

 Awareness of dangers of centralization: Facebook, Google, Amazon, WeChat

 Distributed trust becoming a more “familiar” notion via blockchain

 Advances in cryptography: MPC, homomorphic techniques, ZK, …

 New applications!

2

THIS WORKSHOP

(except that I said the same 20 years ago…)

◼ The distributed trust notion (a hard one to reason about)

◼ True distribution ➔ diversity: O/S, h/w, geography, tooling, admin,

policy and authorization, credential management,…→ fault independence

◼ Wide Area Networks, asynchronous networks, going beyond n/3 !

◼ Role of secure h/w (enclaves, HSMs), virtualization, side channel sec.

◼ Distributed key generation, share recovery, proactive, identifying cheaters

◼ Integration with MPC, blockchains, ZK proofs, …

◼ Large scale TC (10’s/100’s/1000’s/millions parties?)

◼ Post quantum techniques, including symmetric crypto and inf. Theoretic

(NIST competition: Prioritize schemes with threshold implementations)

3

With great opportunities come great challenges

4

Your favorite challenge here

Mine: Build a serious open source

platform for threshold cryptography

Demonstrate new practical applications!

Oblivious PRF (OPRF)

5

fk(x) is a Pseudo-Random
Function (PRF) if

x

Fk(x)or $
Fk or $ Adv

?
S(k) C(x)

Fk(x)Nothing

OPRF protocol

FK

❑ OPRF: An interactive PRF “service” that returns PRF results

without learning the input or output of the function

❑ A POWERFUL primitive

◼ PRF: FK(x) = H(x)k ; input x, key k in Zq ; H = RO onto G (of order q)

◼ Oblivious computation via Blind DH Computation (S has k , C has x)

◼ The blinding factor r works as a one-time encryption key:
hides H(x), x and FK(x) perfectly from S (and from any observer)

◼ Computational cost: one round, 2 exponentiations for C, one for S

 Variant: fixed base exponentiation for C (even faster)

DH-OPRF

6

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

H’(x, H(x)k)
[CP93….NPR99…FIPR05

…JL10…JKK14…]

Threshold DH-OPRF

◼ Single server solution: 𝐹𝑘(𝑥) = (𝐻(𝑥))𝑘

◼ Multi-server solution: server 𝑆𝑖 initialized with (t,n)-share 𝑘𝑖

◼ Shamir in the exponent (polynomial interpolation)

 𝐹𝑘(𝑥) = (𝐻 𝑥)𝜆𝑖1𝑘𝑖1 ∙ (𝐻 𝑥)𝜆𝑖2𝑘𝑖2 ∙ ⋯ ∙ (𝐻 𝑥)𝜆𝑖,𝑡+1𝑘𝑖,𝑡+1

 C sends same 𝑎 = (𝐻(𝑥))𝑟 to 𝑡 + 1 servers;

 𝑆𝑖𝑗 raises 𝑎𝜆𝑖𝑗𝑘𝑖𝑗 and sends back to U who deblinds and multiplies *

◼ Efficiency (!): 2 exp’s for client (indep of t, n), 1 per server, 1 round

7

* If responders among servers not known a-priori, interpolation done by U

. (one multi-exponentiation; can be further optimized [Patel-Yung])

Threshold DH-OPRF (more features)

◼ Threshold operation transparent to client

 Client sends one and same msg to all servers and aggregation of 𝑎𝑘𝑖𝑗 to

𝑎𝑘 can be done by a single server (proxy)

◼ Distributed key generation (key never exists in one physical place)

◼ Share recovery, Proactive security (fundamental for long-lived keys)

◼ Verifiability: With gk, C can verify that H(x)k computed correctly

 Preserves client transparency using interactive verification (2x cost)

 Can also use BLS for “built-in verifiability”

8

Proving Threshold DH-OPRF [JKKX’17]

◼ UC Definition of Threshold OPRF: Extends the (single) OPRF UC

formulation of JKKX’16

◼ Ticketing mechanism: increases when threshold of servers

responds; decreases when client reconstructs an output

 Avoids extraction and other proof elements that degrade performance

◼ Proof of Threshold DH-OPRF based on Gap-OMDH assumption in

ROM, and on Gap-TOMDH to achieve a stronger flavor

 OMDH: “Q interactions with (∙)k
➔ No more than g1

k,…,gQ
k on random gi “

 T-OMDH: require t+1 online attempts for each gi
k

.

9

PPSS: Password Protected Secret Sharing

(password-protected distributed storage)

10

How to protect a secret with a password

◼ Goal: protect secrecy and availability with a single password

 Single server = Single point of compromise for secrecy (offline dict attacks)

and for availability (server gone, secret gone) ➔multi-server solution

◼ Crypto solution: keep the secret encrypted in multiple locations;

secret share the encryption key in multiple servers (t-out-of-n)

 Availability insured if t+1 available, secrecy if t or less corrupted

◼ But how do you authenticate to each server for share retrieval?

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good

11

➔ Each server is a single point of compromise!

How to protect a secret with a password

◼ Password-Protected Secret Sharing (PPSS) guarantees

 Breaking into t servers leaks nothing about secret or password

(assumes all server info lost: shares, long-term keys, password file, etc.)

 Only adversary option: Guess the password, try it in an online attack.

◼ Definition [BJSL’12, CLLN’14, JKKX’16]

 Only unavoidable online attacks allowed: Attacker needs at least

t+1 online interactions to validate a single guessed password

 Offline attacks are not possible, except if t+1 servers compromised

 Subtlety: User needs a way to verify the reconstructed secret is correct

(w/o that information allowing offline attacks)

12

Important: No PKI

◼ Idea: Define the retrieved secret as s = OPRFk(pwd)

and implement the computation as a Threshold OPRF

 U: send a=H(pwd)r, get aKi, reconstruct s= H(pwd)K + mechanism to test s

◼ Definitions and analysis tricky but protocol very simple

 Crucial detail: Must be able to verify the correct secret reconstruction

 Note: No PKI reliance (except for initialization)

◼ PPSS performance: same as Threshold DH-OPRF

 Single round, total 2 exp for client, 1 exp for each server, client transparent

◼ Proactive security and other goodies (as in underlying T-OPRF)

13

TOPPSS: PPSS via Threshold OPRF [JKKX’17]

From (t,n)-PPSS to (t,n)-threshold PAKE

◼ (t,n)-TPAKE [MSJ’02]: Single-password PAKE b/w U and any subset

of n servers - secure as long as at most t servers are corrupted

 Addresses the main threat to passwords today, namely, leakage via server

compromise (even t adversarial servers learn nothing about password)

◼ Generic composition theorem: PPSS + KE → T-PAKE [JKK14]

→ First single-round T-PAKE and best computational performance

(2 exp user, 1 exp server)

 Best previous work required 10 msgs plus 14t exponentiations for client

and 7t for each server (even a dedicated 2-out-of-2 sol’n required 5 msgs)

14

◼ OPAQUE = “an asymmetric (1,1)-PAKE” (hopefully integration w/TLS 1.3)

 Much more secure than “password-over-TLS” (pwd never exposed)

◼ First client-server PKI-free PAKE secure against pre-computation attacks!

 Server can be implemented as threshold OPRF: Best protection against

server compromise and offline attacks (the way most passwords are stolen)

◼ SPHINX: Server-based online password manager

 User only remembers master password, interacts with SPHINX server(s) to

create random independent passwords for each of its accounts

 Magic property: Breaking into the server leaks nothing on the user’s master

password or on the random account passwords

◼ after breaking the server an online guessing attack is still required

More Password Applications from (T-)OPRF

15

OPRF-based Key Management

◼ Ciphertexts and keys need to be stored separately. How? Client stores

ciphertexts, outsources the key to a key management server (KMS)

◼ Today: All encryption keys exposed to the KMS and to channel between

KMS and client (e.g., tls failures, certificates, termination points, CDN,…)

◼ Using OPRF: KMS learns nothing about key or object being encrypted,

and neither do observers of client-KMS channel (unconditional security)

◼ Plus: If client assigns unpredictable identifiers to objects

→ forward security (keys remain secure upon full compromise of KMS)

◼ It gets better:

16

(Oh. And non-interactive key rotation.)

Threshold and proactive security!!

Threshold Decryption

◼ General use case: Data encrypted under a service public key;

decryption possible only upon collaboration of t servers

 Data protected up to the compromise of t servers

◼ Examples

 Long-term data storage: sensitive and valuable information, e.g. personal

information, legal and financial documents, cryptographic keys, etc.

 Computation on encrypted data, only decrypt results (e.g., voting, FHE)

 Specialized cases of computation on encrypted data

◼ Next: Two such examples

17

Operations on Encrypted Sets

◼ Set representation using polynomials [FNP’04, KS’05]

 Set of elements a1, …, an represented by n-degree polynomial (x-a1) ∙∙∙ (x-an)

 Membership test: a is in the set iff P(a)=0

 Adding an element: If P(x) represents S, P’(x)=P(x)(x-a) represents S’ = S ∪ {a}

◼ Privacy preserving operations: Encode coefficients using linear

homomorphic encoding (via Elgamal encryption)

18

Operations on Encrypted Sets

19

−𝑎

Digital Asset Transfer in Blockchain

◼ Example: Know Your Customer (KYC)

◼ Bank A performs KYC for customer U while opening account

 U and A own the KYC file; A is willing to share it with other parties, e.g. bank

B, upon U’s request and upon payment by the receiving party

 U does not want A and B to know each other’s identity (for privacy)

 U wants to remain anonymous to any party other than A and B and wants

repeated uses of KYC to remain unlinkable.

 A does not want another entity (e.g., bank B) to sell U’s KYC – doing so

represents counterfeit by Bank B (even if done in collaboration with U)

◼ Blockchain solution helps to enforce all the above properties
(pseudonyms, commitments, payment, recording, ZK proofs, …)

20

Counterfeit/Duplicate Prevention

◼ Set of submitted values a (asset hashes) is recorded in blockchain

via an encoded polynomial (i.e., encoded coefficients committed to b/c)

◼ Submitter of asset hash a, computes ciphertext C (encoding of P(a))

and an encoding of P(x)(x-a) (using public homomorphic operations)

 Submitter proves in ZK correct computation with respect to a committed

(and hidden) value a

◼ Blockchain peers threshold decrypt C (after randomizing it)

 If result is 1, they reject value a (as already recorded)

 Otherwise, they update the encoded-coefficients in blockchain to those

submitted for P(x)(x-a)

21

Cryptography for Me Too

◼ Most sexual assault is perpetrated by repeat offenders

◼ Goal: Identify survivors of same perpetrator while protecting

anonymity of accusers and accused except if #accusations > quorum

◼ Ideal functionality: Accusers submit a (accuser-id, perpetrator-id)

accusation to a trusted third party who matches perpetrators, and

contact survivors if count for an accused goes over the quorum.

◼ We show a solution that achieves such functionality with full privacy

22

#MeToo

Solution via Threshold Decryption

◼ Use encoded/encrypted polynomials to encode a multi-set

◼ Accusation against accused A recorded as encoding of P(x)(x-a)

◼ Accused A reaches Q accusations when (x-A)Q/P(x)

◼ Testing (x-A)Q/P(x) via randomized (Q-1)-th derivative of P(x)

◼ Reduces to checking P(Q-1)(A) = 0 (derivative is “homomorphic”)

 implemented via public operations on encoded polynomials and a single

membership test using decryption (as in BC example but more involved)

◼ Test performed via threshold decryption by a set of dedicated

servers
23

Concluding Remarks

◼ We live in exciting times

◼ The world cries for distributed cryptography (even if they don’t know it)

◼ Threshold cryptography is one of the most useful and practical

branches of MPC - great applications!

◼ Varied, interesting, timely, practical, ready-to-deploy solutions

◼ Many challenges ahead, a lot to invent…

◼ … and to implement and deploy (open source, please)

◼ Important role for NIST: Credibility, visibility, motivation

 Standards and best practices as inputs to regulations

24

Works Mentioned and Colleagues
◼ TOPPSS: S. Jarecki, A. Kiayas, H. Krawczyk and J. Xu, eprint.iacr.org/2017/363

◼ T-PAKE: S. Jarecki, A. Kiayas, and H. Krawczyk, eprint.iacr.org/2014/650

◼ OPAQUE: S. Jarecki, H. Krawczyk and J. Xu, eprint.iacr.org/2018/163

◼ SPHINX: M. Shirvanian, S. Jarecki, H. Krawczyk, N. Saxena, eprint/2018/695

◼ KMS: S. Jarecki, H. Krawczyk and J. Resch, eprint.iacr.org/2018/733 (preliminary)

◼ Asset transfer: H. Gunasinghe, A. Kundu, E. Bertino, H. Krawczyk, K. Singh,

S. Chari, D. Song, The Web Conference, WWW'2019.

◼ MeToo: B. Kuykendall, H. Krawczyk, and T. Rabin, PETS 2019.

◼ Beyond n/3: C. Cachin, H. Krawczyk, T. Rabin, J. Resch, C. Stathakopoulou,

"Tunable Protocols for Threshold and Proactive Cryptography", coming soon.

◼ A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, F. Valsorda: Privacy Pass:

Bypassing Internet Challenges Anonymously, PETS’18

25

Only example of

deployed OPRF?

Thanks!

26

Define “Threshold Cryptography”

◼ Threshold Cryptography: A special case of secure multi-party

computation (MPC).

◼ TC characterized by the distribution of a centralized service for

protecting both secrecy and availability.

Clients can think of the service as one unit.

 TC as an “implementation issue”, behind the scenes (the less the client is

aware of it, the better – client transparency – communication via gateway)

 The MPC happens at the servers, clients do not run an MPC or talk among

themselves (though they may talk to a set of servers – e.g., for decryption)

◼ TC as one of the most useful and easier to motivate MPC flavors

27

	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

