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Threshold Cryptography:            

Ready for Prime Time?

◼ I would say YES! 

 Huge increase in quantity and sensitivity of stored data

 Cloud storage and computing as the  prevalent paradigm

 Huge key management operations (see Campagna’s AWS talk at RWC’19) 

 Privacy concerns, awareness, regulations

 Awareness of dangers of centralization: Facebook, Google, Amazon, WeChat

 Distributed trust becoming a more “familiar” notion via blockchain

 Advances in cryptography: MPC, homomorphic techniques, ZK, …

 New applications!
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THIS WORKSHOP

(except that I said the same 20 years ago…)



◼ The distributed trust notion (a hard one to reason about)

◼ True distribution ➔ diversity:   O/S, h/w, geography, tooling, admin,            

policy and authorization, credential management,…→ fault independence

◼ Wide Area Networks, asynchronous networks, going beyond n/3 !

◼ Role of secure h/w (enclaves, HSMs), virtualization, side channel sec.

◼ Distributed key generation, share recovery, proactive, identifying cheaters

◼ Integration with MPC, blockchains, ZK proofs, …

◼ Large scale TC (10’s/100’s/1000’s/millions parties?) 

◼ Post quantum techniques, including symmetric crypto and inf. Theoretic 

(NIST competition:  Prioritize schemes with threshold implementations)
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With great opportunities come great challenges
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Your favorite challenge here

Mine: Build a serious open source    

platform for threshold cryptography

Demonstrate new practical applications!



Oblivious PRF (OPRF)

5

fk(x) is a Pseudo-Random 
Function (PRF) if 

x

Fk(x)or $
Fk or $ Adv
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S(k) C(x)

Fk(x)Nothing

OPRF protocol

FK

❑ OPRF: An interactive PRF “service” that returns PRF results                          

without learning the input or output of the function

❑ A POWERFUL primitive



◼ PRF: FK(x) = H(x)k ;  input x, key k in Zq ;  H = RO onto G (of order q)

◼ Oblivious computation via Blind DH Computation (S has k , C has x)

◼ The blinding factor r works as a one-time encryption key:          
hides H(x), x and FK(x) perfectly from S (and from any observer)

◼ Computational cost: one round, 2 exponentiations for C, one for S 

 Variant: fixed base exponentiation for C (even faster)

DH-OPRF 
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a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

H’(x, H(x)k)
[CP93….NPR99…FIPR05 

…JL10…JKK14…]



Threshold DH-OPRF

◼ Single server solution: 𝐹𝑘(𝑥) = (𝐻(𝑥))𝑘

◼ Multi-server solution: server 𝑆𝑖 initialized with (t,n)-share 𝑘𝑖

◼ Shamir in the exponent (polynomial interpolation)

 𝐹𝑘(𝑥) = (𝐻 𝑥 )𝜆𝑖1𝑘𝑖1 ∙ (𝐻 𝑥 )𝜆𝑖2𝑘𝑖2 ∙ ⋯ ∙ (𝐻 𝑥 )𝜆𝑖,𝑡+1𝑘𝑖,𝑡+1

 C sends same 𝑎 = (𝐻(𝑥))𝑟 to 𝑡 + 1 servers;

 𝑆𝑖𝑗 raises 𝑎𝜆𝑖𝑗𝑘𝑖𝑗 and sends back to U who deblinds and multiplies *

◼ Efficiency (!): 2 exp’s for client (indep of t, n), 1 per server, 1 round 

7

* If responders among servers not known a-priori, interpolation done by U      

.  (one multi-exponentiation; can be further optimized [Patel-Yung])



Threshold DH-OPRF (more features) 

◼ Threshold operation transparent to client 

 Client sends one and same msg to all servers and aggregation of 𝑎𝑘𝑖𝑗 to 

𝑎𝑘 can be done by a single server (proxy)

◼ Distributed key generation (key never exists in one physical place)

◼ Share recovery, Proactive security (fundamental for long-lived keys)

◼ Verifiability: With gk, C can verify that H(x)k computed correctly

 Preserves client transparency using interactive verification  (2x cost)

 Can also use BLS for “built-in verifiability” 
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Proving Threshold DH-OPRF [JKKX’17]

◼ UC Definition of Threshold OPRF: Extends the (single) OPRF UC 

formulation of JKKX’16  

◼ Ticketing mechanism: increases when threshold of servers 

responds; decreases when client reconstructs an output

 Avoids extraction and other proof elements that degrade performance

◼ Proof of Threshold DH-OPRF based on Gap-OMDH assumption in 

ROM, and on Gap-TOMDH to achieve a stronger flavor

 OMDH: “Q interactions with (∙)k
➔ No more than g1

k,…,gQ
k on random gi “

 T-OMDH: require t+1 online attempts for each gi
k

.
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PPSS: Password Protected Secret Sharing  

(password-protected distributed storage)

10



How to protect a secret with a password

◼ Goal: protect secrecy and availability with a single password

 Single server = Single point of compromise for secrecy (offline dict attacks) 

and for availability (server gone, secret gone)   ➔multi-server solution

◼ Crypto solution: keep the secret encrypted in multiple locations;  

secret share the encryption key in multiple servers (t-out-of-n)

 Availability insured if t+1 available, secrecy if t or less corrupted

◼ But how do you authenticate to each server for share retrieval?

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good
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➔ Each server is a single point of compromise!



How to protect a secret with a password

◼ Password-Protected Secret Sharing (PPSS) guarantees

 Breaking into t servers leaks nothing about secret or password          

(assumes all server info lost: shares, long-term keys, password file, etc.)

 Only adversary option: Guess the password, try it in an online attack.

◼ Definition [BJSL’12, CLLN’14, JKKX’16]

 Only unavoidable online attacks allowed: Attacker needs at least                          

t+1 online interactions to validate a single guessed password

 Offline attacks are not possible, except if t+1 servers compromised

 Subtlety: User needs a way to verify the reconstructed secret is correct   

(w/o that information allowing offline attacks)
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Important: No PKI



◼ Idea: Define the retrieved secret as s = OPRFk(pwd)                       

and implement the computation as a Threshold OPRF 

 U: send a=H(pwd)r,  get aKi, reconstruct s= H(pwd)K + mechanism to test s

◼ Definitions and analysis tricky but protocol very simple 

 Crucial detail: Must be able to verify the correct secret reconstruction

 Note: No PKI reliance (except for initialization)

◼ PPSS performance: same as Threshold DH-OPRF

 Single round,  total 2 exp for client, 1 exp for each server, client transparent

◼ Proactive security and other goodies (as in underlying T-OPRF)
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TOPPSS: PPSS via Threshold OPRF [JKKX’17]



From (t,n)-PPSS to (t,n)-threshold PAKE

◼ (t,n)-TPAKE [MSJ’02]: Single-password PAKE b/w U and any subset 

of n servers - secure as long as at most t servers are corrupted 

 Addresses the main threat to passwords today, namely, leakage via server 

compromise (even t adversarial servers learn nothing about password) 

◼ Generic composition theorem:   PPSS + KE → T-PAKE [JKK14]

→ First single-round T-PAKE and best computational performance   

(2 exp user, 1 exp server)

 Best previous work required 10 msgs plus 14t exponentiations for client   

and 7t for each server (even a dedicated 2-out-of-2 sol’n required 5 msgs)

14



◼ OPAQUE = “an asymmetric (1,1)-PAKE” (hopefully integration w/TLS 1.3)

 Much more secure than “password-over-TLS” (pwd never exposed)

◼ First client-server PKI-free PAKE secure against pre-computation attacks!

 Server can be implemented as threshold OPRF: Best protection against  

server compromise and offline attacks (the way most passwords are stolen)  

◼ SPHINX: Server-based online password manager

 User only remembers master password, interacts with SPHINX server(s) to 

create random independent passwords for each of its accounts

 Magic property: Breaking into the server leaks nothing on the user’s master 

password or on the random account passwords 

◼ after breaking the server an online guessing attack is still required

More Password Applications from (T-)OPRF
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OPRF-based Key Management

◼ Ciphertexts and keys need to be stored separately. How? Client stores 

ciphertexts, outsources the key to a key management server (KMS)

◼ Today: All encryption keys exposed to the KMS and to channel between 

KMS and client (e.g., tls failures, certificates, termination points, CDN,…)

◼ Using OPRF:  KMS learns nothing about key or object being encrypted, 

and neither do observers of client-KMS channel (unconditional security)

◼ Plus: If client assigns unpredictable identifiers to objects                            

→ forward security (keys remain secure upon full compromise of KMS)

◼ It gets better: 
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(Oh. And non-interactive key rotation.)

Threshold and proactive security!!



Threshold Decryption

◼ General use case:  Data encrypted under a service public key; 

decryption possible only upon collaboration of  t servers 

 Data protected up to the compromise of t servers

◼ Examples

 Long-term data storage:  sensitive and valuable information, e.g. personal 

information, legal and financial documents, cryptographic keys, etc.

 Computation on encrypted data, only decrypt results (e.g., voting, FHE)

 Specialized cases of computation on encrypted data 

◼ Next: Two such examples
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Operations on Encrypted Sets

◼ Set representation using polynomials   [FNP’04, KS’05] 

 Set of elements a1, …, an represented by n-degree polynomial (x-a1) ∙∙∙ (x-an)

 Membership test: a is in the set iff P(a)=0

 Adding an element: If P(x) represents S, P’(x)=P(x)(x-a) represents S’ = S ∪ {a}

◼ Privacy preserving operations: Encode coefficients using linear 

homomorphic encoding (via Elgamal encryption)

18



Operations on Encrypted Sets
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−𝑎



Digital Asset Transfer in Blockchain 

◼ Example: Know Your Customer (KYC)

◼ Bank A performs KYC for customer U while opening account

 U and A own the KYC file;  A is willing to share it with other parties, e.g. bank 

B, upon U’s request and upon payment by the receiving party

 U does not want A and B to know each other’s identity  (for privacy)

 U wants to remain anonymous to any party other than A and B and wants 

repeated uses of KYC to remain unlinkable.

 A does not want another entity (e.g., bank B) to sell U’s KYC – doing so 

represents counterfeit by Bank B (even if done in collaboration with U)

◼ Blockchain solution helps to enforce all the above properties     
(pseudonyms, commitments, payment, recording, ZK proofs, …)
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Counterfeit/Duplicate Prevention

◼ Set of submitted values a (asset hashes) is recorded in blockchain 

via an encoded polynomial (i.e., encoded coefficients committed to b/c)

◼ Submitter of asset hash a, computes ciphertext C (encoding of P(a)) 

and an encoding of P(x)(x-a)  (using public homomorphic operations)

 Submitter proves in ZK correct computation with respect to a committed 

(and hidden) value a

◼ Blockchain peers threshold decrypt C (after randomizing it)                             

 If result is 1, they reject value a (as already recorded)

 Otherwise, they update the encoded-coefficients in blockchain to those 

submitted for P(x)(x-a)
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Cryptography for Me Too

◼ Most sexual assault is perpetrated by repeat offenders

◼ Goal: Identify survivors of same perpetrator while protecting 

anonymity of accusers and accused except if #accusations > quorum

◼ Ideal functionality: Accusers submit a (accuser-id, perpetrator-id) 

accusation to a trusted third party who matches perpetrators, and 

contact survivors if count for an accused goes over the quorum.

◼ We show a solution that achieves such functionality with full privacy
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#MeToo



Solution via Threshold Decryption

◼ Use encoded/encrypted polynomials to encode a multi-set

◼ Accusation against accused A recorded as encoding of P(x)(x-a)

◼ Accused A reaches Q accusations when  (x-A)Q/P(x) 

◼ Testing (x-A)Q/P(x) via randomized (Q-1)-th derivative of P(x) 

◼ Reduces to checking  P(Q-1)(A) = 0   (derivative is “homomorphic”)

 implemented via public operations on encoded polynomials and a single 

membership test using decryption (as in BC example but more involved)

◼ Test performed via threshold decryption by a set of dedicated 

servers 
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Concluding Remarks

◼ We live in exciting times

◼ The world cries for distributed cryptography (even if they don’t know it)

◼ Threshold cryptography is one of the most useful and practical 

branches of MPC  - great applications!

◼ Varied, interesting, timely, practical, ready-to-deploy solutions

◼ Many challenges ahead, a lot to invent…

◼ … and to implement and deploy   (open source, please)

◼ Important role for NIST:  Credibility, visibility, motivation

 Standards and best practices as inputs to regulations
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Only example of 

deployed OPRF?



Thanks!
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Define “Threshold Cryptography”

◼ Threshold Cryptography: A special case of secure multi-party 

computation (MPC).

◼ TC characterized by the distribution of a centralized service for 

protecting both secrecy and availability.                                                     

Clients can think of the service as one unit.

 TC as an “implementation issue”, behind the scenes (the less the client is 

aware of it, the better – client transparency – communication via gateway)

 The MPC happens at the servers, clients do not run an MPC or talk among 

themselves (though  they may talk to a set of servers – e.g., for decryption)

◼ TC as one of the most useful and easier to motivate MPC flavors
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