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1. Introduction

Secrets are difficult to maintain

A proverbial wisdom for centuries

openclipart.org/detail/76603

“Three may keep a secret, if two of them are dead.”
(In: Poor Richard’s Almanack. Benjamin Franklin, 1735) [Sau34]

“For three may kepe counseil if twain be away!”
(In: The Ten Commandments of Love. Geoffrey Chaucer, 1340–1400) [Cha00]

Today we deal with digital information and computing

I Cryptography is a primary means for protecting digital information, e.g.
encryption for confidentiality, signatures for integrity and authenticity, ...

openclipart.org/detail/101407

I Cryptographic effectiveness often hinges on:

I secrecy and correctness of cryptographic keys
I implementations that use keys in an algorithm
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1. Introduction

Crypto is affected by implementation vulnerabilities
Attacks can exploit differences between ideal vs. real implementations:

heartbleed.com

Heartbleed bug (2014)
Buffer over-read in OpenSSL’s

implementation of TLS reads
private memory (inc. keys) from

HTTPS servers [NVD14, DLK+14]

Meltdown & Spectre (2017)
Side-channel attacks reveal private

memory (inc. keys) of other programs
[NVD18c, LSG+18]

[NVD18a, NVD18b, KGG+18]
meltdownattack.com

“ZigBee Chain reaction” (2017)
Side-channel attack extracts global firmware private key
for Phillips Hue light-bulbs, then enabling a chain attack
using the ZigBee communication protocol [RSWO17]

Cold-boot attacks (2009)

[Don13]

Freezing volatile memory (DRAM)
enables data remanence after
power-off, allowing extraction

of keys from memory [HSH+09]

“Bellcore attack” (1997)

Fault injected on RSA-CRT
induces incorrect signature

that enables RSA
factorization [BDL97]

[SH07]

It is essential to have reliable implementations of cryptographic
primitives, immune to breaches in the computational environment
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Single-Points of Failure!
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threshold schemes

for cryptographic

primitives

to promote the

security of crypto

implementations
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1. Introduction

The threshold approach

High-level idea:
Use redundancy & diversity to mitigate

the compromise of some (up to a threshold)
number of components (a.k.a. nodes)

The red dancing devil is from
clker.com/clipart-13643.html

The intuitive aim: improve security
vs. a non-threshold scheme

(depends on adversarial model)
clker.com/clipart-10778.html

Note on co-existing notation:
I f -out-of-n: tolerates the compromise of up to f nodes

I k-out-of-n: requires correct participation of at least k nodes
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1. Introduction

Secret Sharing Schemes (a starting point)
Split a secret key into n secret “shares” for storage at rest.

y

x

Blakley scheme (1979)

P

xs

Alice

Bob

Cai

Humanoid cliparts:
clker.com/clipart-*.html

Alice: *=2478
Bob: *=2482
Cai: *=2479

y

x

0

Shamir scheme (1979)

ys

Λ(x)
yA

1

Alice

yB

2

Bob

yC

3

Cai

I The secret xs is the x-coord of point P;

I Each share is a distinct line crossing P;
I A single line does not convey info of xs;
I Two distinct lines (shares) reveal P.

I The secret ys is the y-coord of Λ(x = 0);

I Each share is a point (Λ(i), i) of line Λ;
I A single point does not convey info of ys;
I Two distinct points (shares) reveal Λ.

Each share in isolation has no information about the secret.
k shares (in the example, k = 2) are enough to recover the secret.

But, how to avoid recombining the key when the key is needed by an algorithm?
Use threshold schemes for cryptographic primitives (next)
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I Two distinct points (shares) reveal Λ.

Each share in isolation has no information about the secret.
k shares (in the example, k = 2) are enough to recover the secret.

But, how to avoid recombining the key when the key is needed by an algorithm?
Use threshold schemes for cryptographic primitives (next)
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1. Introduction

Our current step

Image adapted from:
openclipart.org/detail/283392

Devise initial questions for discussion
towards standardization and validation of

threshold schemes for cryptographic primitives.

Goals for this presentation:

I Convey high-dimensionality of the problem

I Convey a few technical examples (not delving into much detail)
I Motivate feedback (NISTIR draft) and engagement (next steps...)
I Suggest moving forward (with challenges)
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2. Preliminaries

Example: RSA signature (or decryption)

Classical scheme [RSA78]

I KeyGen (by signer):
I Public Modulus: N = p · q
I Secret SignKey: d
I Public VerKey: e (with d · e =φ 1)

I Sign(m): σ =N md

I Verify(σ,m): σe =?
N m

A 3-out-of-3 threshold scheme
I KeyGen (by dealer):

I Same N, d, e
I SubKeys: d1, d2, d3: d1 + d2 + d3 =φ d

I Sign’(m): { separate: si =N mdi : i = 1, 2, 3

combine: σ =N s1 · s2 · s3 }
I Verify(σ,m): σe =?

N m

About the threshold scheme:

SignKey d not recombined; can reshare d leaving e fixed; same σ; efficient!

Facilitating setting: ∃ dealer; ∃ homomorphism; all parties know m.

Not fault-tolerant: a single sub-signer can boycott a correct signing.

I Can it be improved to withstand f malicious signers? Yes (hint in next slide)

I Can it be done: @ dealer, @ homomorphisms, secret-shared m? Yes (... later)
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2. Preliminaries

Example: Robust k-out-of-n Threshold RSA Signature

Can the previous scheme be enhanced? E.g., to work:
I if only a subset I with k′ parties is available, with k ≤ k′ ≤ n?
I robust against malicious parties (i.e., incorrect signature-shares)?

Yes! (e.g., [Sho00]) At high level:
I RSA homomorphism→ can combine (slightly tweaked) sub-signatures (via

polynomial interpolation in the exponent — get mf (0) from mλ
′
i,I f (i) : i ∈ I);

I Dealer commits (one-time) to every share→ each sub-signer gives a NIZKP
(non-interactive zero-knowledge proofs) of correct sub-signature.

It is efficient:
I Size: final signature is as original
I Sub-signer computation: original, plus produce 1 NIZKP (2 exps)
I Combiner computation: original, plus 1 ext-GCD and verify NIZKPs (2 · k exps)
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2. Preliminaries

A DL-based example: threshold Schnorr signature
(DL = Discrete-Logarithm)

(Next clicks: ignore details — just making comparative remarks)

Non-threshold scheme [Sch90] A multi-signature scheme [BN06]

∗

I Space: G, g (group, generator) I Space: same G, g
I KeyGen (by signer): I KeyGen (by parties i = 1, ..., n):

I Secret SignKey: x ∈ Zq I Secret SignKey: xi ∈ Zq

I Public VerKey: X = g−x I Public VerKey: Xi = gxi

I Signx(m) by signer: I Signx,L(m) by subset I ⊆ {1, ..., n}
I R = gr I R =

∏
i∈I Ri =

∏
i∈I gri

I c =q H(R||m) I ci =q H(Xi||R||I||m)
I s =q r + x · c I s =q

∑
i∈L si =

∑
i∈I(ri + xici)

I output σ = (s, c) I output σ = (R, s)
I VerifyX(σ,m): I Verify(σ,m):

I calculate R = gsXc I calculate ci = H(Xi||R||M||I||m)
I check H(R||m) =? c I check gs =? R

∏
i∈I Xi

ci

∗Some features: no dealer; dynamic threshold (verifier decides what is
acceptable); dynamic set of signers; verifying⇒ knowing who signed.
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2. Preliminaries

Comparing thresholds

3-out-of-3 decryption:
clker.com/clipart-encryption.html

I 3 nodes needed to decrypt
(availability: k = 3, f = 0);

I key is secret if at least 1 node
does not leak its key share
(secrecy of key: k = 1, f = 2).

2-out-of-3 signature:
clker.com/clipart-3712.html

I 2 nodes needed to sign
(availability: k = 2, f = 1);

I key secret if at least 2 nodes
do not leak their key shares
(secrecy of key: k = 2, f = 1).

Do these provide better security than a non-threshold scheme (n = 1, f = 0)?

I Are there common failure modes? (e.g., is breaking 1 node as difficult as breaking 3?)

I Even if independent failure mode: can breaking 2 out of 3 be easier than 1 out of 1?
I Is plaintext secrecy affected? (does the client send/receive it whole or shared?)
I May the implementation bring new security problems?

“k-out-of-n” or “f -out-of-n” is not a sufficient
characterization for a comprehensive security assertion
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2. Preliminaries

Reliability — one metric of security

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

A possible model: each node fails (independently) with constant rate probability

0.0 0.5 1.0 1.5 2.0
τ

R

0.2

0.4

0.6

0.8

1.0

0.0

[BB12]

Time normalized: τ = 1 is the expected time to failure (ETTF) of a node

Curve n f τmax Example
Q 1 0 — Reference
U 2 1 ∞ Crash FT
V 3 1 0.693 Majority vote
$ 4 1 0.264 ¬�BFT

τmax = max
(

t : Rn
f (t) > R1

0(t)
)

Reliability can be degraded when increasing the
threshold (f ), even if nodes fail independently
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2. Preliminaries

Improve reliability with rejuvenations
Rejuvenation (recovery of nodes): compromised state→ healthy state

I Examples: replace device, patch vulnerability, update or reset a state, ...
I Attenuates the reliability-degradation for long mission time (MT)
I Increases availability (another metric: % of secure time), even for∞ MT

Rejuvenation modes:
I parallel vs. sequential
I offline vs. online
I reactive vs. proactive (detected

vs. stealth intrusions; frequency?)

Parallel and instantaneous

node 1

r = 0

node 3
node 2

Time: 0 1 32 4 65 7 8 109

∆ = 3

Sequential and instantaneous
0

node 1

node 3

node 2

Time: 1 32 4 65 7 8 109

r = 0 ∆ = 3 δ = 1

Sequential, one at a time
0 1 32 4 65 7 8 109

r = 0 δ = 1∆ = 4

node 1

node 3

node 2

node 4

Sequential, two at a time

node 1

node 3

node 2

node 4

0Time: 1 32 4 65 7 8 109

r = 2 ∆ = 4 δ = 1

R R

R R R R

R R R R
R R R R R R

R RR

R

R R

[BB12]

Other effects:
I adds cost, implementation complexity ... (new vulnerabilities?)
I parallel rejuvenation may imply period of unavailable service
I sequential rejuvenations may still allow a mobile attacker to persist
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2. Preliminaries

Another model

What if all nodes are compromised (e.g., leaky) from the start?

Threshold scheme may still be effective,
if it increases the cost of exploitation!

(e.g., if exploiting a leakage vulnerability
requires exponential number of traces for

high-order Differential Power Analysis)
openclipart.org/detail/172330

Challenge questions:
I which models are realistic / match state-of-the-art attacks?
I what concrete parameters (e.g., n) thwart real attacks?
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3. Characterizing features

What kind of threshold scheme?

To reflect on a threshold scheme, let us characterize the system.

Four main features:
1. Kinds of threshold
2. Communication interfaces
3. Executing platform
4. Setup and maintenance

Each feature contains distinct options that affect security in a different way.

A characterization provides a better context for security assertions.
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3. Characterizing features

1. Kinds of threshold

I Need k-out-of-n good nodes (or tolerate up to f -out-of-n bad nodes) for
which values k and f ? for which security properties?

(some pairs (n, f ) may not be possible, e.g., some settings require n ≥ 3f + 1)

I Levels of diversity (e.g., location, software, shares) vs. non-diversity
across the n components (common vulnerabilities)?

I Variable threshold and number of nodes?

(changing parameters may need its own protocol)

openclipart.org/detail/71491
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3. Characterizing features

2. Communication interfaces

I Inter-node: structure (e.g., star vs. clique)? channel protection?

I Client↔ crypto module: proxy? primary node? shares?

I Is client unaware vs. needs proof of threshold computation?

openclipart.org/detail/190624
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3. Characterizing features

3. Executing platform

I Single (multi-chip) device vs. multi-party (e.g., multiple computers)

I Software vs. hardware

I Additional trusted machinery? (global clock, proxy, RNG, combiner)

openclipart.org/detail/101407
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3. Characterizing features

4. Setup and maintenance

I How to bootstrap?
I dealer vs. SMPC-initialization of secret shares
I crypto setup assumption: identities, PKI, synchrony, ...?

I Rejuvenation modes: (parallel vs. sequential, online vs. offline, ...)

I Diversity: offline pre-computation vs. on-the-fly vs. limited set

openclipart.org/detail/161401 openclipart.org/detail/161389
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3. Characterizing features

Deployment context

I Application context. Should it affect security requirements?

I If app layer verifies signature correctness, is it
okay to use non-robust signature scheme?

I Encryption more difficult? openclipart.org/detail/281637

I Conceivable attack types.
clker.com/clipart-10778

I Active vs. passive
I Static vs. adaptive
I Stealth vs. detected

I Invasive (physical) vs. non-invasive
I Side-channel vs. communication interfaces
I Parallel vs. sequential (wrt attacking nodes)

A threshold scheme improving security against
an attack in an application may be powerless or degrade

security for another attack in another application
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4. Some numbers

Some numbers
[Content adapted in online version]

Just for an intuition:
brief notes on

recent efficiency claims.

openclipart.org/detail/291407

Recent research works significantly improve concrete efficiency
of threshold schemes for cryptographic primitives, e.g.:

I threshold signatures and threshold key generation
I threshold AES evaluation (SMPC-based)
I threshold circuit design of symmetric primitives
I threshold random-number generation (coin-tossing)
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5. Steps (NISTIR, workshop)

NIST Internal Report

It intends to:

I Position a set of relevant questions (mostly unanswered)
I Layout the need to describe characterizing features
I Motivate development of a criteria for selection of schemes
I Be a reference to motivate engagement from stakeholders

Any feedback you provide is welcome and valuable!

Timeline:
I Post public draft still in July.
I First round of public comments till October 22, 2018.

Next slides: some representative questions on flexibility and validation challenges
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5. Steps (NISTIR, workshop)

Flexibility of features and parameters

Standard→ implementation validation→ deployment

I Standard. What flexibility of features & parameters
should a threshold-scheme standard allow?

I Validation. What should be delimited at validation
phase (e.g., validated only for n ≥ 2f + 1; particular
hardware; shares initialized with SMPC, ...)

I Deployment. What remains flexible for deployment?
(e.g., f ; how to (re-)initialize shares? dealer vs. SMPC?)

clker.com/clipart-stretching-navy.html

I What should be tested/validated vs. can rely on vendor assertion?
I E.g., how to ensure that good randomness will be used?
I E.g., how to validate rejuvenations (schedule, diversity, ...)?

Answers may to a certain extent depend on what can be assessed
by test & validation procedures (some of which to develop)!
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5. Steps (NISTIR, workshop)

The validation challenge

Devise standards of testable and validatable threshold schemes
vs.

devise testing and validation for standardized threshold schemes

Validation is needed:
I When using crypto, federal agencies can only use standardized algorithms

and validated implementations [tC96]

I FIPS 140-2 defines, for cryptographic modules, 4 security levels: subsets of
applicable security assertions [NIS01]

Automation of validation in the CAVP and CMVP:
I Automate CAVP by Fall 2018, based on newly developed ACVP [NIS18]

I Ongoing pilots (Google, Red Hat) on automated module validations

Legend: ACVP (Automated Cryptographic Validation Protocol) CAVP (Cryptographic Algorithm Validation Program);
CMVP (Cryptographic Module Validation Program); FIPS (Federal Information Processing Standards).
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5. Steps (NISTIR, workshop)

Some open questions about validation

I Security assertions: what should be validated
about a threshold scheme implementation?

I Checklist of attacks: should a validation level
(= set of security assertions) contain a checklist
of attack scenarios and security properties?

clker.com/clipart-25196.html

I Adaptation: how should validation procedures and assertions vary
with (or adapt to) threshold features and application context?

I with/without dealer, executing platform, rejuvenation modes, ...
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5. Steps (NISTIR, workshop)

Modularity

Patch-and-revalidate scenario. If a f -out-of-n (for availability)
system has diversity of implementation across nodes, then:

I a new vulnerability in a node can be patched offline

I a node can be audited / upgraded / revalidated offline
openclipart.org/detail/22712

Base primitives. Is it useful to standardize/define certain modules?
(composability argument)

I secret sharing
I commitments
I ZK proofs

I oblivious transfer
I ... (other SMPC tools)

clker.com/clipart-2948.html
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5. Steps (NISTIR, workshop)

A Workshop?

We want to find answers in collaboration with stakeholders!

Can we do it in an open workshop?

I learn the state-of-the-art and survey the area

I define a criteria for a call proposals for threshold schemes

I tentative month: March 2019?
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6. Final remarks

Summary

I Crypto implementations will have vulnerabilities!
I Threshold schemes have potential to avoid single-points of failure.
I There are long standing solutions ... there are also recent ones

To evaluate threshold schemes, we should characterize:
I Features (thresholds, interfaces, platform, setup and maintenance)
I Adversarial model: goals, capabilities, vectors
I Different effects (improve vs. degrade) on diverse security properties
I New complexity from threshold approach? (bugs, efficiency, ...)

Standardizing a threshold scheme would also entail:
I Deciding what remains flexible up to validation and/or deployment phases
I Develop test procedures and security assertions for validation
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6. Final remarks

Moving forward

The end goals:
I standardize threshold schemes for cryptographic primitives
I develop guidelines for validation
I promote good practices of deployment

Meanwhile:
I We would appreciate feedback on the Draft NISTIR (8214).

I
We would like to extend an open invitation
for you to participate in upcoming steps.
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6. Final remarks

Thanks

Thank you for your attention!
Threshold Schemes for Cryptographic Primitives

A step towards standardization?

Contact us at threshold-crypto@nist.gov

Check updates https://csrc.nist.gov/Projects/Threshold-Cryptography

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or
as views of the U.S. Department of Commerce. The identification of any commercial product or trade names in this
presentation does not imply endorsement of recommendation by NIST, nor is it intended to imply that the material or
equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of
such use constituting licensed and/or fair use.
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