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Motivation for High Level Synthesis (HLS) 
Two approaches: (1) Register-Transfer Level (RTL) - based implementation 
and (2) High Level Synthesis (HLS) - based implementation. 

RTL-Based Implementation: 
● Better performance and less resource utilization (area overhead). 
● Requires more time for implementation and verification. 
● The architecture is fixed. 
HLS-Based Implementation: 
● Might be less efficient and customizable. 

○ Depends upon application, skill of the engineer, etc. 
● Faster and easier implementation due to algorithmic approach. 
● Easy to change the design and architecture. 

○ Useful for Design-space exploration. 
Paper: https://eprint.iacr.org/2019/047.pdf 

3 Website: https://wp.nyu.edu/hipqccheck/ 

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/


 
 

   
          

 

     

     

   

 

 

 

 

 

 

High Level Synthesis (HLS) 
High-Level Synthesis (HLS) is used to automatically generate RTL designs starting from a 
high-level specification. 

• It leverages state-of-the-art compilers (e.g., GCC or LLVM). 

• It implements several hardware-oriented and technology-aware optimizations. 
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Design Space Exploration 
Design Space Exploration (DSE) refers to systematic analysis and removing of unwanted 
design points based on parameters of interest. 

It helps to evaluate the trade-off between parameters 
of interest. 

For IoT devices, area is the most important 
parameter. 

For Servers, speed is the most important parameter. 

Design-space exploration 
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Design Space Exploration (DSE) 

We are focusing on three parameters: Security, Time and 
Area. 

For each algorithm security level, tens of different design 
points are identified. 

3-D Design-space exploration 
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Design Flow for PQC algorithm 
Part-1: Preparing the C code 

● Input C design is taken from NIST PQC 
Round-2 submission. 

● The C code has to go through lot of changes 
to make it HLS-ready. NIST PQC Round-2 
developers provided required help for this. 

● NIST KATs are used for verification. 

● For qTesla security level -1, we have to make 
around 40 modifications. 

HLS-based implementation of PQC algorithms. 
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Examples of C code changes 
int crypto_sign_keypair(unsigned char *pk, 
unsigned char *sk) 

int crypto_sign_keypair(unsigned char
pk[CRYPTO_PUBLICKEYBYTES], unsigned 
char sk[CRYPTO_SECRETKEYBYTES]) 

Remove dynamic memory allocation 

memcpy(&t[PARAM_N],hm, HM_BYTES); 

for(loop=0;loop<HM_BYTES;loop++) 
t[PARAM_N+loop]=hm[loop]; 

Replace library functions 

typedef struct { 
const unsigned char *data; 
uint64_t next; 
int bitsUsed; 

} reader; 

unsigned char data[FIXED_SIZE]; 
uint64_t next; 
int bitsUsed; 

Modify complex structures 
((UINT64*)state)[lanePosition] ^= lane; 

for(loop=offset;loop<offset+length;loop++) 
state[lanePosition*8+loop]=data[loop-offset]; 

Remove type casting 
Paper: https://eprint.iacr.org/2019/047.pdf 
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Design Flow for PQC algorithm 
Part-2: Generation of RTL 

● The modules/loops/functions which take 
more time or area is defined as critical 
modules/loops/functions. 

● Loop Unrolling and Pipelining improves 
performance. 

● C/RTL co-simulation for verification of 
Hardware. 

● Final optimized RTL verified with KATs. 
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HLS-based design exploration flow
of PQC algorithms. 
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Scope of the ongoing study 

● 17 KEMs. 
● 9 Signature schemes. 

Algorithm Security Security Security Security Security 
Level 1 Level 2 Level 3 Level 4 Level 5 

Crystals-Dilithium X X X X 

qTESLA X X X X 

MQDSS X X 

LUOV X X X 

SPHINCS+ X X X 

PICNIC X X X 

FALCON X X X 

GeMSS X X X 

Rainbow X X X 

Key Generation 

Signature Verification 

Signature Generation 
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Design Space Exploration (DSE) of CRYSTALS-Dilithium 

Key Generation 

(0,0,0) • d 

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security 
level-1 LUT and latency. 

● The area overhead is similar for different 
security level. 

● The Latency increases as security strength 
increases. 
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DSE of CRYSTALS-Dilithium 

Signature Generation 

(0,0,0) 
• d 

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security 
level-1 LUT and latency. 

● The optimization directives improves the 
performance and area in hardware compared 
to baseline implementation. 

● The area overhead is similar for different 
security level. 

● The Latency increases as security strength 
increases. 
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DSE of CRYSTALS-Dilithium 

Signature Verification 

(0,0,0) 

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security 
level-1 LUT and latency. 

● The difference in area and latency is less as 
the points are closer to each other. 

● The Latency increases as security strength 
increases. 
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    Area Comparison for Security level-2 Signature Schemes 

LookUp Table comparison for security level-2 of signature schemes. 
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   Performance Comparison for Security level-2 Signature Schemes 

Latency comparison for security level-2 of signature schemes. 
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FPGA Demo for CRYSTALS-Dilithium Signature Generation 
FPGA 

PQC Component Control 
(RTL by HLS) Unit CPU 

UART 

Latency clock cycle = 701166 
Clock Frequency = 50MHz 

*Artix-7 FPGA is recommended by NIST. Paper: https://eprint.iacr.org/2019/047.pdf 
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Conclusion 
• The RTL generated by HLS can be used for hardware design of the PQC algorithm. It 

can be used as first implementation of hardware. Manual implementation can further 
improve the design. 

• Other teams are focusing on software/hardware co-design and speed up or 
implementing some part of the design in hardware. We are focusing on complete 
hardware design and its evaluation. 

• For Security level-2 
o CRYSTALS-Dilithium has the best performance in signature schemes. 
o CRYSTALS-Dilithium and MQDSS have less area while LUOV area overhead is 

significantly more. 

• With HLS, design-space exploration is analyzed. Design-Space exploration helps to 
estimate performance and area of hardware architecture. 
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Future Research 

• For design-space exploration, POWER would be added as one more parameter. 

• FPGA implementation and analysis of the PQC algorithms. 

• Automate the HLS-synthesizable C generation process. 

• Evaluate the hardware implementations against side-channel attacks. 
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