

 Hardware Evaluation of NIST PQC Round-2
Algorithms

Deepraj Soni1, Kanad Basu2, Mohammed Nabeel3, Ramesh Karri1
New York University

1New York University - New York, NY, USA
2University of Texas at Dallas - Dallas, Texas, USA

Paper: https://eprint.iacr.org/2019/047.pdf 3New York University - Abu Dhabi, Abu Dhabi, UAE
Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Outline
● High-Level Synthesis (HLS)
● Design Space Exploration (DSE)
● HLS-based Design flow
● Design Space Exploration example for a PQC algorithm
● Security level-2 Signature schemes comparison
● FPGA Demo
● Conclusion
● Future Work
● Acknowledgement

Paper: https://eprint.iacr.org/2019/047.pdf
2 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Motivation for High Level Synthesis (HLS)
Two approaches: (1) Register-Transfer Level (RTL) - based implementation
and (2) High Level Synthesis (HLS) - based implementation.

RTL-Based Implementation:
● Better performance and less resource utilization (area overhead).
● Requires more time for implementation and verification.
● The architecture is fixed.
HLS-Based Implementation:
● Might be less efficient and customizable.

○ Depends upon application, skill of the engineer, etc.
● Faster and easier implementation due to algorithmic approach.
● Easy to change the design and architecture.

○ Useful for Design-space exploration.
Paper: https://eprint.iacr.org/2019/047.pdf

3 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

High Level Synthesis (HLS)
High-Level Synthesis (HLS) is used to automatically generate RTL designs starting from a
high-level specification.

• It leverages state-of-the-art compilers (e.g., GCC or LLVM).

• It implements several hardware-oriented and technology-aware optimizations.

Compiler Frontend

Wrapping

Analysis

Transformation

HLS

Scheduling

Resource Binding

Synthesis

HLL Spec

Tech Library

Constraints

Accelerator
(HDL)

Testbench

HLS tool

C Code

Artix-7 FPGA

Directives

Vivado HLS

Synthesized RTL

Testbench

Paper: https://eprint.iacr.org/2019/047.pdf

HLS based design process

4 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Design Space Exploration
Design Space Exploration (DSE) refers to systematic analysis and removing of unwanted
design points based on parameters of interest.

It helps to evaluate the trade-off between parameters
of interest.

For IoT devices, area is the most important
parameter.

For Servers, speed is the most important parameter.

Design-space exploration

Paper: https://eprint.iacr.org/2019/047.pdf
5 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Design Space Exploration (DSE)

We are focusing on three parameters: Security, Time and
Area.

For each algorithm security level, tens of different design
points are identified.

3-D Design-space exploration

Paper: https://eprint.iacr.org/2019/047.pdf
6 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Design Flow for PQC algorithm
Part-1: Preparing the C code

● Input C design is taken from NIST PQC
Round-2 submission.

● The C code has to go through lot of changes
to make it HLS-ready. NIST PQC Round-2
developers provided required help for this.

● NIST KATs are used for verification.

● For qTesla security level -1, we have to make
around 40 modifications.

HLS-based implementation of PQC algorithms.

C Design

Modified C Design
*Replace recursion
*Modify library
function
*Many more

Yes

HLS-ready C
Code

Input

HLS
Tunings

C Simulation.
Verification?

No

HLS

C/RTL Co-
Simulation.
Verification?

Synthesized RTL
No

Paper: https://eprint.iacr.org/2019/047.pdf
7 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Examples of C code changes
int crypto_sign_keypair(unsigned char *pk,
unsigned char *sk)

int crypto_sign_keypair(unsigned char
pk[CRYPTO_PUBLICKEYBYTES], unsigned
char sk[CRYPTO_SECRETKEYBYTES])

Remove dynamic memory allocation

memcpy(&t[PARAM_N],hm, HM_BYTES);

for(loop=0;loop<HM_BYTES;loop++)
t[PARAM_N+loop]=hm[loop];

Replace library functions

typedef struct {
const unsigned char *data;
uint64_t next;
int bitsUsed;

} reader;

unsigned char data[FIXED_SIZE];
uint64_t next;
int bitsUsed;

Modify complex structures
((UINT64*)state)[lanePosition] ^= lane;

for(loop=offset;loop<offset+length;loop++)
state[lanePosition*8+loop]=data[loop-offset];

Remove type casting
Paper: https://eprint.iacr.org/2019/047.pdf

8 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Design Flow for PQC algorithm
Part-2: Generation of RTL

● The modules/loops/functions which take
more time or area is defined as critical
modules/loops/functions.

● Loop Unrolling and Pipelining improves
performance.

● C/RTL co-simulation for verification of
Hardware.

● Final optimized RTL verified with KATs.

HLS-ready C
code

Optimized RTL

Critical
Modules/Loops

Directives for
Optimization

HLS

Synthesized RTL

C/RTL
Co-Simulation.
Verification?

Yes No

Unrolling/
pipelining

HLS-based design exploration flow
of PQC algorithms.

Paper: https://eprint.iacr.org/2019/047.pdf
9 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Scope of the ongoing study

● 17 KEMs.
● 9 Signature schemes.

Algorithm Security Security Security Security Security
Level 1 Level 2 Level 3 Level 4 Level 5

Crystals-Dilithium X X X X

qTESLA X X X X

MQDSS X X

LUOV X X X

SPHINCS+ X X X

PICNIC X X X

FALCON X X X

GeMSS X X X

Rainbow X X X

Key Generation

Signature Verification

Signature Generation

Paper: https://eprint.iacr.org/2019/047.pdf
10 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Design Space Exploration (DSE) of CRYSTALS-Dilithium

Key Generation

(0,0,0) • d

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security
level-1 LUT and latency.

● The area overhead is similar for different
security level.

● The Latency increases as security strength
increases.

Paper: https://eprint.iacr.org/2019/047.pdf
11 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

DSE of CRYSTALS-Dilithium

Signature Generation

(0,0,0)
• d

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security
level-1 LUT and latency.

● The optimization directives improves the
performance and area in hardware compared
to baseline implementation.

● The area overhead is similar for different
security level.

● The Latency increases as security strength
increases.

Paper: https://eprint.iacr.org/2019/047.pdf
12 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

DSE of CRYSTALS-Dilithium

Signature Verification

(0,0,0)

● Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security
level-1 LUT and latency.

● The difference in area and latency is less as
the points are closer to each other.

● The Latency increases as security strength
increases.

Paper: https://eprint.iacr.org/2019/047.pdf
13 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

 Area Comparison for Security level-2 Signature Schemes

LookUp Table comparison for security level-2 of signature schemes.
Paper: https://eprint.iacr.org/2019/047.pdf

14 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

 Performance Comparison for Security level-2 Signature Schemes

Latency comparison for security level-2 of signature schemes.
Paper: https://eprint.iacr.org/2019/047.pdf

15 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

FPGA Demo for CRYSTALS-Dilithium Signature Generation
FPGA

PQC Component Control
(RTL by HLS) Unit CPU

UART

Latency clock cycle = 701166
Clock Frequency = 50MHz

*Artix-7 FPGA is recommended by NIST. Paper: https://eprint.iacr.org/2019/047.pdf
16 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf

Conclusion
• The RTL generated by HLS can be used for hardware design of the PQC algorithm. It

can be used as first implementation of hardware. Manual implementation can further
improve the design.

• Other teams are focusing on software/hardware co-design and speed up or
implementing some part of the design in hardware. We are focusing on complete
hardware design and its evaluation.

• For Security level-2
o CRYSTALS-Dilithium has the best performance in signature schemes.
o CRYSTALS-Dilithium and MQDSS have less area while LUOV area overhead is

significantly more.

• With HLS, design-space exploration is analyzed. Design-Space exploration helps to
estimate performance and area of hardware architecture.

Paper: https://eprint.iacr.org/2019/047.pdf
17 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/
http:HLScanbeusedforhardwaredesignofthePQCalgorithm.It

Future Research

• For design-space exploration, POWER would be added as one more parameter.

• FPGA implementation and analysis of the PQC algorithms.

• Automate the HLS-synthesizable C generation process.

• Evaluate the hardware implementations against side-channel attacks.

Paper: https://eprint.iacr.org/2019/047.pdf
18 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Acknowledgement
Special thanks to NIST PQC algorithm Developers for helping us realize the hardware
by answering questions while implementation.

o Dr. Nina Bindel for qTESLA.
o Dr. Ward Beullens for LUOV.
o Dr. Greg Zaverucha and Dr. Sebastian Ramacher for Picnic.
o Dr. Jintai Ding and Dr. Ming-Shing Chen for RAINBOW.
o Dr. Alessandro Barenghi for LEDAcrypt.
o Dr. Xianhui Lu for LAC.
o Dr. Ludovic Perret for GeMSS
o Dr. Marc Manzano and Dr. Najwa Aaraj of DarkMatter inc. Abu Dhabi, UAE offered

timely and insightful feedback (especially to explore the security-informed trade-
offs) on the early drafts of the report.

Paper: https://eprint.iacr.org/2019/047.pdf Contact: dss545@nyu.edu
19 Website: https://wp.nyu.edu/hipqccheck/

https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/
mailto:Contact:dss545@nyu.edu

