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Motivation for High Level Synthesis (HLS)

Two approaches: (1) Register-Transfer Level (RTL) - based implementation
and (2) High Level Synthesis (HLS) - based implementation.

RTL-Based Implementation:

e Better performance and less resource utilization (area overhead).
e Requires more time for implementation and verification.
e The architecture is fixed.
HLS-Based Implementation:
e Might be less efficient and customizable.
o Depends upon application, skill of the engineer, etc.
e Faster and easier implementation due to algorithmic approach.
e Easy to change the design and architecture.
o Useful for Design-space exploration.
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High Level Synthesis (HLS)

High-Level Synthesis (HLS) is used to automatically generate RTL designs starting from a
high-level specification.

* |t leverages state-of-the-art compilers (e.g., GCC or LLVM).

* |t implements several hardware-oriented and technology-aware optimizations.

HLL Spec
Compiler Frontend HLS > Acz;ﬁll:()alr_a)tor
b Wrapping Scheduling
Tech Library — 7] Analysis Resource Binding
Transformation Synthesis > Testbench
Constraints HLS tool

Vivado HLS

HLS based design process
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Design Space Exploration

Design Space Exploration (DSE) refers to systematic analysis and removing of unwanted
design points based on parameters of interest.
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For Servers, speed is the most important parameter. Area

Design-space exploration
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Design Space Exploration (DSE)
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Area.
For each algorithm security level, tens of different design g A“é_ ,,,,,, - A_,_‘_'_‘___x_
points are identified. A A
POV — Y N
[ A .
Area -
o S
;QG h

A - Same security strength
A - Same security strength

3-D Design-space exploration
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Modified C Design

Design Flow for PQC algorithm ____ ... *Replace recurion
C Design » *Modify library
function

Part-1: Preparing the C code “Wany more

A

HLS
Tunings
e Input C design is taken from NIST PQC No
Round-2 submission. erification?

e The C code has to go through lot of changes
to make it HLS-ready. NIST PQC Round-2

developers provided required help for this. e

Synthesized RTL

e NIST KATs are used for verification.

C/RTL Co-
Simulation.
Verification?

e For qTesla security level -1, we have to make ggj;eadyc «

around 40 modifications. 7Y

N Yes
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Examples of C code changes

int crypto_sign_keypair(unsigned char *pk,
unsigned char *sk)

3

int crypto_sign_keypair(unsigned char
pk[CRYPTO_PUBLICKEYBYTES], unsigned
char skfCRYPTO_SECRETKEYBYTES])

Remove dynamic memory allocation

typedef struct {
const unsigned char *data;
uint64_t next;
int bitsUsed;

} reader;

unsigned char data[FIXED_SIZE];
uint64_t next;
int bitsUsed;

memcpy(&[PARAM_N],hm, HM_BYTES);

b4

for(loop=0;loop<HM_BYTES;loop++)
t{fPARAM_N-+loop]=hml[loop];

Modify complex structures

Replace library functions

((UINT64*)state)[lanePosition] A= lane;

for(loop=offset;loop<offset+length;loop++)
state[lanePosition*8+loop]=data[loop-offset];

Remove type casting
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Design Flow for PQC algorithm | rswac e
Part-2: Generation of RTL ——
Optimization B
Unrolling/
pipelining v
e The modules/loops/functions which take / HLJ
more time or area is defined as critical
modules/loops/functions. v

Synthesized RTL

e Loop Unrolling and Pipelining improves

performance.
. ion f ificati N Yes C/RTL
e C/RTL co-simulation for verification o Optimized RTL 1< Co-Simulation.
Hardware. Verification?
e Final optimized RTL verified with KATs. K /
HLS-based design exploration flow
of PQC algorithms.
¢ Paper: https://eprint.iacr.org/2019/047.pdf K/@
! 9 Website: https://wp.nyu.edu/hipgccheck/ v

NYU

CYBER SECURITY


https://eprint.iacr.org/2019/047.pdf
https://wp.nyu.edu/hipqccheck/

Scope of the ongoing study

o 17 KEM:s.
e 9 Signature schemes.
o- ( 3\
Algorithm Security | Security | Security Security Security > Key Generation
Level 1 Level 2 Level 3 Level 4 Level 5 N J
Crystals-Dilithium X X X X » Signature Generation
qTESLA X X X X [ R
» Signature Verification
MQDSS X X N 4
LUOV X X X
g
SPHINCS+ X X X
PICNIC X X X
FALCON X X X
GeMSS X X X
Rainbow X X X
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Design Space Exploration (DSE) of CRYSTALS-Dilithium

e Design-space exploration of CRYSTALS-
o :‘“ Dilithium is normalised with baseline security
S 4 level-1 LUT and latency.
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DSE of CRYSTALS-Dilithium

Security level
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Signature Generation ]

Design-space exploration of CRYSTALS-
Dilithium is normalised with baseline security
level-1 LUT and latency.

The optimization directives improves the
performance and area in hardware compared
to baseline implementation.

The area overhead is similar for different
security level.

The Latency increases as security strength
increases.
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DSE of CRYSTALS-Dilithium
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Area Comparison for Security level-2 Signature Schemes

-10°
4 0

| I

Key Generation
l Signature Generation
I Signature Verification

qTESLA MQDSS Crystals- LUOV
Dilithium
LookUp Table comparison for security level-2 of signature schemes.
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Performance Comparison for Security level-2 Signature Schemes

; | Key Generation §

s | | Signature Generation .

10 - I Signature Verification E

107 | -
106
10°
104

qTESLA MQDSS Crystals- LUOV
] ] Dilithium ]
Latency comparison for security level-2 of signature schemes.
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FPGA Demo for
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CRYSTALS-Dilithium Signature Generation

FPGA

PQC Component |[__ | Control

cPU (RTL by HLS) Unit
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*Artix-7 FPGA is recommended by NIST.
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Conclusion

« The RTL generated by HLS can be used for hardware design of the PQC algorithm. It
can be used as first implementation of hardware. Manual implementation can further
improve the design.

» Other teams are focusing on software/hardware co-design and speed up or
implementing some part of the design in hardware. We are focusing on complete
hardware design and its evaluation.

* For Security level-2

o CRYSTALS-Dilithium has the best performance in signature schemes.
o CRYSTALS-Dilithium and MQDSS have less area while LUOV area overhead is
significantly more.

« With HLS, design-space exploration is analyzed. Design-Space exploration helps to
estimate performance and area of hardware architecture.
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Future Research

For design-space exploration, POWER would be added as one more parameter.

FPGA implementation and analysis of the PQC algorithms.

Automate the HLS-synthesizable C generation process.

Evaluate the hardware implementations against side-channel attacks.
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