Practical Forgery on Lilliput-AE

Orr Dunkelman ${ }^{1}$, Nathan Keller ${ }^{2}$, Eran Lambooij ${ }^{1}$ and Yu Sasaki ${ }^{3}$

${ }^{1}$ Computer Science Department, University of Haifa, Israel
${ }^{2}$ Department of Mathematics, Bar-Ilan University, Israel
${ }^{3}$ NTT Secure Platform Laboratories, 3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585, Japan

7 November 2019

Plan of Tackling

- (Short) recap of Authenticated Encryption.
- Lilliput.
- Probability 1 Related-(Twea)Key differential.
- Attack on Lilliput-AE in the Nonce Misuse mode.
- Conclusion.

Authenticated encryption + forgery

Authenticated encryption + forgery

Lilliput

Probability 1 Related-(Twea)Key differential

Other differentials

State difference (bytes)	Tweak difference (bytes)
$3,4,8,10$	3,4
$1,5,9,11$	1,5
$0,2,6,12,13,14$	$0,2,6$
$1,3,4,5,8,9,10,11$	$1,3,4,5$
$0,2,3,4,6,8,10,12,13,14$	$0,2,3,4,6$
$0,1,2,5,6,9,11,12,13,14$	$0,1,2,5,6$
$0,1,2,3,4,5,6,8,9,10,11,12,13,14$	$0,1,2,3,4,5,6$

Table: All Related-(Twea)Key differentials possible for the Lilliput round function

Lilliput-AE Key Schedule

Lilliput-AE Key Schedule Differential

Recap: Observations

- We have a 1 round iterated Related-(Twea)Key differential
- For the differential to work we need the same key difference in every round
- If we introduce a difference in the tweak this difference is inserted every round
- Question: Can we use this to attack the mode?

Generating the Tag (Nonce-misuse)

Tag collision (Nonce-misuse)

Tag collision (Nonce-misuse)

Encryption (Nonce-misuse)

Probability 1 Related-(Twea)Key differential

Complexity?

- We choose $\left(0,0,0,01_{x}, 01_{x}, 0,0,0\right)$ as the tweak difference.
- The plaintext difference is $\left(0,0,0,0,0,01_{x}, 0,01_{x}| | 0,0,0,01_{x}, 01_{x}, 0,0,0\right)$.
- The tweak reaches this value after $2^{32}+2^{24}+1$ blocks in the tag generation.
- Thus we need $2^{32}+2^{24}+2$ message blocks to attack the (approx. 64GB).

Why did this work + Proposed Fix

- Lilliput linear layer.
- Tweak does not get updated.
- Interaction between the differential and mode.
- Easy fix: Change α_{0} to update the tweak in between rounds.

Conclusion

- We showed a chosen plaintext attack on the nonce misuse mode.
- With one message of size $2^{32}+2^{24}+2$ blocks we can get a tag collision.
- This allows us to generate the tag and ciphertext for 2^{256} different messages.
- Attacks with known plaintext and in the nonce respecting mode are in the paper.
- Be careful when changing the key schedule of a cipher.
- Related-(Twea)Key differential attacks.

Questions?

