
You can write unit/affiliation.
To change content go to: Menu -> Insert (Mac = Display) -> Header and Footer

A Side-Channel Assisted Attack
on NTRU

Amund Askeland
Sondre Rønjom

NTRU

Decrypt Implementation
int owcpa_dec(unsigned char *rm, const unsigned char *ciphertext,

const unsigned char *secretkey) {

 int i;

 int fail;

 poly x1, x2, x3, x4;

 poly *c = &x1, *f = &x2, *cf = &x3;

 poly *mf = &x2, *finv3 = &x3, *m = &x4;

 poly *liftm = &x2, *invh = &x3, *r = &x4;

 poly *b = &x1;

 poly_Rq_sum_zero_frombytes (c, ciphertext);

 poly_S3_frombytes (f, secretkey);

 poly_Z3_to_Zq (f);

 poly_Rq_mul (cf, c, f);

 poly_Rq_to_S3 (mf, cf);

 poly_S3_frombytes (finv3, secretkey +NTRU_PACK_TRINARY_BYTES);

 poly_S3_mul (m, mf, finv3);

Decrypt Implementation
int owcpa_dec(unsigned char *rm, const unsigned char *ciphertext,

const unsigned char *secretkey) {

 int i;

 int fail;

 poly x1, x2, x3, x4;

 poly *c = &x1, *f = &x2, *cf = &x3;

 poly *mf = &x2, *finv3 = &x3, *m = &x4;

 poly *liftm = &x2, *invh = &x3, *r = &x4;

 poly *b = &x1;

 poly_Rq_sum_zero_frombytes (c, ciphertext);

 poly_S3_frombytes (f, secretkey);

 poly_Z3_to_Zq (f);

 poly_Rq_mul (cf, c, f);

 poly_Rq_to_S3 (mf, cf);

 poly_S3_frombytes (finv3, secretkey +NTRU_PACK_TRINARY_BYTES);

 poly_S3_mul (m, mf, finv3);

Mapping ℤ3 To ℤq

● Maps {0, 1, 2} to {0, 1, q-1}
● Highlighted intermediate result:

○ “...0000” if coefficient was 1 or 0
○ “...1111” if coefficient was 2

/* Map {0, 1, 2} -> {0,1,q-1} in place */

void poly_Z3_to_Zq (poly *r) {

 int i;

 for (i = 0; i < NTRU_N; i ++) {

 r->coeffs[i] = r->coeffs[i] | ((-(r->coeffs[i] >>1)) & (NTRU_Q-1));

 }

}

Mapping ℤ3 To ℤq

● Maps {0, 1, 2} to {0, 1, q-1}
● Highlighted intermediate result:

○ “...000” if coefficient was 1 or 0
○ “...111” if coefficient was 2

/* Map {0, 1, 2} -> {0,1,q-1} in place */

void poly_Z3_to_Zq (poly *r) {

 int i;

 for (i = 0; i < NTRU_N; i ++) {

 r->coeffs[i] = r->coeffs[i] | ((-(r->coeffs[i] >>1)) & (NTRU_Q-1));

 }

}

Power Measurement

Power Measurement

Decrypt Implementation
int owcpa_dec(unsigned char *rm, const unsigned char *ciphertext,

const unsigned char *secretkey) {

 int i;

 int fail;

 poly x1, x2, x3, x4;

 poly *c = &x1, *f = &x2, *cf = &x3;

 poly *mf = &x2, *finv3 = &x3, *m = &x4;

 poly *liftm = &x2, *invh = &x3, *r = &x4;

 poly *b = &x1;

 poly_Rq_sum_zero_frombytes (c, ciphertext);

 poly_S3_frombytes (f, secretkey);

 poly_Z3_to_Zq (f);

 poly_Rq_mul (cf, c, f);

 poly_Rq_to_S3 (mf, cf);

 poly_S3_frombytes (finv3, secretkey +NTRU_PACK_TRINARY_BYTES);

 poly_S3_mul (m, mf, finv3);

Decrypt Implementation
int owcpa_dec(unsigned char *rm, const unsigned char *ciphertext,

const unsigned char *secretkey) {

 int i;

 int fail;

 poly x1, x2, x3, x4;

 poly *c = &x1, *f = &x2, *cf = &x3;

 poly *mf = &x2, *finv3 = &x3, *m = &x4;

 poly *liftm = &x2, *invh = &x3, *r = &x4;

 poly *b = &x1;

 poly_Rq_sum_zero_frombytes (c, ciphertext);

 poly_S3_frombytes (f, secretkey);

 poly_Z3_to_Zq (f);

 poly_Rq_mul (cf, c, f);

 poly_Rq_to_S3 (mf, cf);

 poly_S3_frombytes (finv3, secretkey +NTRU_PACK_TRINARY_BYTES);

 poly_S3_mul (m, mf, finv3);

Packing Coefficients
● Five consecutive coefficients packed as

○ [2, 1, 0, 0, 1] -> 86
● Unpacking in two steps

○ 86 -> [86, 28, 9, 3, 1]
○ [86, 28, 9, 3, 1] -> [2, 1, 0, 0, 1]

Packing Coefficients
● Five consecutive coefficients packed as

○ [2, 1, 0, 0, 1] -> 86
● Unpacked in two steps

○ 86 -> [86, 28, 9, 3, 1]
○ [86, 28, 9, 3, 1] -> [2, 1, 0, 0, 1]

Modulo 3
● Highlighted intermediate result:

○ “...000” if and
○ “...000” if
○ “...111” otherwise

static uint16_t mod3(uint16_t a) {

 uint16_t r;

 int16_t t, c;

 r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255

 r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 t = r - 3;

 c = t >> 15;

 return (c&r) ^ (~c&t);

}

Modulo 3
● Highlighted intermediate result:

○ “...000” if and
○ “...000” if
○ “...111” otherwise

static uint16_t mod3(uint16_t a) {

 uint16_t r;

 int16_t t, c;

 r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255

 r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 t = r - 3;

 c = t >> 15;

 return (c&r) ^ (~c&t);

}

Modulo 3
● Highlighted intermediate result:

○ “...000” if and
○ “...000” if
○ “...111” otherwise

static uint16_t mod3(uint16_t a) {

 uint16_t r;

 int16_t t, c;

 r = (a >> 8) + (a & 0xff); // r mod 255 == a mod 255

 r = (r >> 4) + (r & 0xf); // r' mod 15 == r mod 15

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 r = (r >> 2) + (r & 0x3); // r' mod 3 == r mod 3

 t = r - 3;

 c = t >> 15;

 return (c&r) ^ (~c&t);

}

Partial Key Recovery
● Iterate 3⁵ candidates for quintuples

○ Discard those not matching measurements
● On average we recover 75% of f

Partial Key Recovery
● Iterate 3⁵ candidates for quintuples

○ Discard those not matching measurements
● On average we recover 75% of f

Full Key Recovery
● Apply lattice reduction

Some Remarks
● Relies only on very strong leakages

○ Robust and single trace
● Leakage can be reduced
● Implementation does not claim SCA protection

Some Remarks
● Relies only on very strong leakages

○ Robust and single trace
● Leakage can be reduced
● Implementation does not claim SCA protection

Some Remarks
● Relies only on very strong leakages

○ Robust and single trace
● Leakage can be reduced
● Implementation does not claim SCA protection

Questions?

