NIST Lightweight Cryptography Workshop 2020

Active and Passive Side-Channel Key Recovery Attacks on Ascon

Keyvan Ramezanpour^{1,2}

Abubakr Abdulgadir ³ William Diehl ¹ Jens-Peter Kaps ³ Paul Ampadu ²

¹ Signatures Analysis Laboratory (SAL), Virginia Tech, Blacksburg, VA 24060

² Multifunction Integrated Circuits and Systems Group (MICS), Virginia Tech, Blacksburg, VA 24060

³ Cryptographic Engineering Research Group (CERG), George Mason University, Fairfax, VA 22033

October 19-21, 2020

Outline

- Introduction to side-channel analysis (SCA)
- Attack setup for active and passive SCA
- Key recovery attacks on Ascon
 - Active SCA with Voltage Glitch on FPGA
 - Passive SCA with power measurements on FPGA
- Results
- Conclusions

Introduction

Security in Internet-of-Things (IoT)

- <u>Authenticated ciphers</u> are trending for lightweight applications;
 - Confidentiality, data integrity and authentication with single algorithm.
 - Possible lower overhead of security protocol implementation in hardware/software.

• **NIST LWC Competition:**

- Assessing security of candidates for lightweight cryptography (LWC) and Hash functions, and
- Robustness of the implementations (and ease of inclusion of countermeasures) against sidechannel analysis (SCA).

• Ascon authenticated cipher:

- The first choice of CAESAR committee for lightweight use case (Feb. 2019).
- Selected as a candidate for the second round of NIST LWC Competition.
- We demonstrate vulnerability of Ascon to both active and passive SCA attacks.

Side-Channel Analysis (SCA)

- Physical *Implementation* of cryptographic algorithms leak secret information
 - <u>Side-channel analysis (SCA)</u> exploits runtime signatures to infer secret information.

Two categories of SCA analysis:

- **1.** <u>Passive SCA</u>: measure signals and correlate with secret;
 - Power Analysis (PA) and electromagnetic (EM) Analysis;
 - Power consumption of device is correlated with processed (secret) data.
- 2. <u>Active SCA</u>: induce a stimulus and observe data-dependent behavior;
 - Fault Injection Analysis (FIA): inject fault during execution with known properties;
 - Only correct key guess exhibits expected fault properties.

Key Recovery with SCA

Algorithmic-level vulnerability:

- A subset of key K is sufficient to calculate intermediate variable X from input or output. **Implementation-level vulnerability:**
- Power consumption during execution correlated with data.

Algorithmic-level vulnerability:

• A subset of key K is sufficient to calculate intermediate variable X from input or output. **Implementation-level vulnerability:**

Data distribution under fault injection is different from max-entropy distribution.

Ascon Authenticated Cipher

Diffusion (matrix notation):

 $\Sigma_i(x_i) = (L_i x_i) \mod 2, \quad i = 0, 1, ..., 4$

SCA Attack Setup

SCA Attack on Ascon

Vulnerability to fault attack (active SCA):

• Addition of secret key at the end of Finalization for *authentication tag* generation.

Vulnerability to power attack (passive SCA):

• Initialization of cipher state with <u>secret key</u> at the beginning of Initialization Stage.

Attack Setup

FOBOS: Flexible Open-source workBench fOr Side-channel analysis.

Target board (under attack): Artix-7 FPGA executing Ascon. **Control board:**

Data, configuration and synchronization.

Power attack:

PicoScope 5000 measuring power consumption of target FPGA chip.

Fault attack:

Single-pole double-thru (SPDT) analog switch for switching V_{DD} of target FPGA chip.

Fault Attack on Ascon (Active SCA)

Statistical Ineffective Fault Analysis (SIFA)

- Inject fault at last round of finalization.
- Collect multiple outputs (tags) for random inputs.
- Requires only *correct* outputs. (successful even if countermeasures suppress faulty values.)
- For every key guess:
 - 1. Calculate the output of Sbox pairs under attack.
 - 2. Find the distribution of calculated data.
 - 3. Calculate the SEI* of data distribution.
- Key guess with highest SEI is the correct key.

*SEI: Square Euclidean Imbalance

K. Ramezanpour, P. Ampadu, and W. Diehl, "A Statistical Fault Analysis Methodology for the Ascon Authenticated Cipher," *HOST* 2019. K. Ramezanpour, P. Ampadu, and W. Diehl, "FIMA: Fault Intensity Map Analysis," *COSADE 19*. Springer, Cham, 2019.

SIFA Attack on Ascon with Voltage Glitch

- Set operation conditions at high frequency/low voltage corner.
- <u>Our setup</u>: Artix-7 FPGA executing Ascon with V_{DD}=0.75V @ 10 MHz without errors.
- Reducing V_{DD} to 0.51V (with SPDT switch) results in desired fault effect.

Power Attack on Ascon (Passive SCA)

Power Attack on Ascon

- Cipher state initialized with initial vector (IV), secret key and nonce.
- Nonce values are known in the proposed power attack.
- Bit-sliced implementation of S-box with one S-box operation at every clock cycle (lightweight implementation).

K. Ramezanpour, P. Ampadu, and W. Diehl, "SCAUL: Power Side-Channel Analysis with Unsupervised Learning," *arXiv preprint arXiv:2001.05951* (2020).

Clustering-based PA Techniques

Available information:

- A set of power traces with the corresponding input data (nonce values in Ascon).
- A leakage model describing the relationship between power traces and intermediate variable.
- Intermediate variable can be calculated from the input data and a subset of secret key.

Clustering-based PA Techniques

For every key candidate:

- **1.** Calculate intermediate variable corresponding to all power traces.
- 2. Calculate the value of the leakage model using the intermediate variables.
- 3. Cluster power traces in which similar power traces exhibit similar leakage values.
- 4. Calculate the difference between a statistics (e.g. mean in 1st order SCA) of power traces in clusters.
- . The inter-cluster difference of the statistics is the measure for ranking key candidates.

Side-Channel Analysis with Reinforcement Learning (SCARL)

assignment

difference

Leakage model (generic):

$$L(X) = \alpha_0 + \sum_{U \in \mathbb{F}_2^m \setminus \{0\}} \alpha_U X^U + \epsilon$$

Estimated leakage for every key candidate:

$$\alpha_U^* = \min_{\alpha_U} \mathbb{E}_j \left[|L(X_j^*) - l_j|^2 \right], \ U \in \mathbb{F}_2^m$$

Low-order leakage:

$$\sigma_j^* = \alpha_0^* + \sum_{U \in \mathbb{F}_2^m \setminus \{0\}} \sum_{HW(U) \le m_0} \alpha_U^*(X_j^*)^U$$

K. Ramezanpour, P. Ampadu, and W. Diehl, "SCARL: Side-Channel Analysis with Reinforcement Learning on the Ascon Authenticated Cipher," *arXiv preprint arXiv:2006.03995* (2020).

Results

Results of Voltage Glitch on Ascon

- Intermediate Value: 2 least significant bits at output of S-box under attack.
- Bias of intermediate values with fault locations at S-boxes 3 & 4:

Key Recovery with Voltage Glitch

Classical PA Attacks on Ascon

- Differential power analysis (DPA) and correlation power analysis (CPA) with two different leakage models:
 - Hamming weight (Hw) and most significant bit (MSB) of intermediate variable (S-box output) correlated with power traces.
 - Both techniques fail to detect the correct key with 40K traces.

SCARL Attack on Ascon

• SCARL attack based on deep learning able to recover the secret key with 24K traces.

Conclusions

• Protection of cryptographic hardware implementations is critical for security.

- Algorithmic properties and implementation vulnerability of ciphers are exploited in side-channel analysis to recover the Ascon secret key.
 - Addition of secret key for tag generation exploited in fault injection attack.
 - Initialization of the cipher state with secret key exploited in power attack.
- Voltage glitch on FPGA implementation of Ascon induces significant bias into the Sbox outputs which is exploited in a fault attack.
- Reinforcement learning technique more efficient than DPA or CPA.

