
Analysing the Leakage-Resistance

of some Round-2 Candidates of the NIST's

Lightweight Crypto Standardization Process

François-Xavier Standaert

UCLouvain, ICTEAM, Crypto Group (Belgium)
NIST Lightweight Crypto Workshop 2019, Gaithersburg, USA

Side-channel countermeasures

1999: masking countermeasure [CJRR99]

2008: leakage-resilient stream cipher [DP08]

2006: shuffling countermeasure [HOS06]

2012: masking-optimized ciphers [PRC12]

2015: leakage-resilient enc. & auth. [PSV15]

2004: hardware countermeasures [M04]

2017-19: leakage-res. AE [BMOS17,GPPS19]

implementation

hardware

implementation

mode

primitive

mode

mode

abstraction level

1

Side-channel countermeasures

1999: masking countermeasure [CJRR99]

2008: leakage-resilient stream cipher [DP08]

2006: shuffling countermeasure [HOS06]

2012: masking-optimized ciphers [PRC12]

2015: leakage-resilient enc. & auth. [PSV15]

2004: hardware countermeasures [M04]

2017-19: leakage-res. AE [BMOS17,GPPS19]

key recovery

key recovery

key recovery

pseudorand.

key recovery

integ. & conf.

integ. + conf.

1

security target

Side-channel countermeasures

1999: masking countermeasure [CJRR99]

2008: leakage-resilient stream cipher [DP08]

2006: shuffling countermeasure [HOS06]

2012: masking-optimized ciphers [PRC12]

2015: leakage-resilient enc. & auth. [PSV15]

2004: hardware countermeasures [M04]

2017-19: leakage-res. AE [BMOS17,GPPS19]

key recovery

key recovery

key recovery

pseudorand.

key recovery

integ. & conf.

integ. + conf.

1

security target

This talk: difference in primitives (a bit) & modes (mostly)

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

2

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

2

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

• Nonce misuse-resistance (M) or resilience (m)

2

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

• Nonce misuse-resistance (M) or resilience (m)

• Leakage-resistance (L) or resilience (l)

2

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

• Nonce misuse-resistance (M) or resilience (m)

• Leakage-resistance (L) or resilience (l)

• Single/multi-user (beyond birthday?) security

2

Security targets

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality &
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

• Nonce misuse-resistance (M) or resilience (m)

• Leakage-resistance (L) or resilience (l)

• Single/multi-user (beyond birthday?) security

• Selection depends on applications (e.g., software
updates / control in hostile environment ⇒ CIML2)

2

Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

3

initialization bulk computation finalization verif.

Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

• (Some steps empty for some modes, ignoring AD)

3

initialization bulk computation finalization verif.

Mode analysis (II)

• Reduce the mode to (weak) assumptions (tightly)

4

leak-free components

strong unpredictability with leakage

oracle-free leakages […]

hard-to-invert leakages

bounded leakage

simulatable leakages

only computation leaks

• Translate assumptions into necessary design goals

• Set the target security level (2𝑚 leakages, 2𝑡 time)

• Evaluate implementation cost & performances

DPA
(key recovery)

Practical evaluation (I) 5

DPA
(key recovery)

init./final. bulk comp. tag verif.

int.

conf.

DPA (key recovery)

SPA (key recovery)

unbounded leakages

DPA (tag recovery)

unbounded leakages

1-block conf.

DPA (key recovery)

SPA (key recovery) ∅

• Approximate performance overheads

• DPA security: high-order masking, shuffling, …
• SPA security: parallel implementations, noise, …

x 5 – 10 – 100

Practical evaluation (II) 6

x 5 – 10 – 100

init./final. bulk comp. tag verif.

int.

conf.

x 5 – 10 – 100
x 1 – 5

x 1

x 5 – 10 – 100
x 1

1-block conf.

x 5 – 10 – 100
x 1 – 5 ∅

• Approximate performance overheads

• Beware of too simple evaluation strategies!
• T-test negative with >100k traces, attack in <2000 traces

x 5 – 10 – 100

Practical evaluation (II) 6

x 5 – 10 – 100

init./final. bulk comp. tag verif.

int.

conf.

x 5 – 10 – 100
x 1 – 5

x 1

x 5 – 10 – 100
x 1

1-block conf.

x 5 – 10 – 100
x 1 – 5 ∅

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

OCB-Pyjamask

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E blocks
• Primitive/implementation SCA security only

7

K

OCB-Pyjamask

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E blocks
• Primitive/implementation SCA security only

• Others: SKINNY-AEAD, SUNDAE-GIFT, OCB-AES, …

7

K

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Bulk computation only requires SPA security
• Light blue: no averaging is possible (fresh states)

• Calling for so-called leveled implementations
• Energy gains thanks to 2 different implementations

PHOTON-Beetle 8

• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce
misuse (idem with decryption leakages)

PHOTON-Beetle 8

• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce
misuse (idem with decryption leakages)

• Others: Gimli, Ketje, Oribatida, …
• (Roughly applies to all inner-keyed sponges)

PHOTON-Beetle 8

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

• Target: CCAL1 (L in enc only, no misuse)

• Similar to inner-keyed sponges

Ascon (confidentiality) 9

• Target: CCAmL1 (L in enc only, misuse-resilience)

• Strengthened init./final. steps maintain the SPA
resistance requirement for the bulk computation
with nonce misuse and encryption leakages

Ascon (confidentiality) 9

• Target: CCAmL2 (L in enc/dec, misuse-resilience)

• Limited confidentiality with decryption leakages
• Dark orange/blue: message decrypted before

verification ⇒ the same state can be repeatedly
measured, allowing SPA with averaged leakage

Ascon (confidentiality) 9

• Target: CIL1 (L in enc only, no misuse)

• Bulk computation leakage can be unbounded
• Shows interest of composite definitions!

Ascon (integrity) 10

• Target: CIML1 (L in enc only, misuse-resistance)

• Same feature (unbounded leakages for the bulk)

Ascon (integrity) 10

• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

Ascon (integrity) 10

• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

• Others: ACE, GIBBON, Spix, WAGE, …

Ascon (integrity) 10

Spook – TETSponge (confidentiality)

• CCAL1, CCAmL1, CCAmL2, CIL1, CIML1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)

11

Spook – TETSponge (integrity)

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification tolerates unbounded leakages
• (Inverse-free DPA resistant tag verif. also possible)

• Others: TBC-only variant (TET)

12

Outline

1. How to reason about (AE) leakage?
• Specify the security target
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes

ISAP (confidentiality)

• CCAL1 (L in enc only, no misuse)

• DPA resistance via SPA-resistance (with averaging)?

13

ISAP (confidentiality)

• CCAL1 (L in enc only, no misuse)

• If DPA-resistant RK, then similar to Ascon/Spook

13

ISAP (confidentiality)

• CCAmL1 (L in enc only, misuse-resilience)

• Not much change (averaging everywhere in RK)

13

ISAP (confidentiality)

• CCAmL2 (L in enc/dec, misuse-resilience)

• 2 pass ⇒ confidentiality in dec. if DPA-resistant verif.

13

ISAP (integrity)

• CIL1 (L in enc only, no misuse)

• Similar to ASCON/Spook (with ≠ init./final.)

14

ISAP (integrity)

• CIML1 (L in enc only, misuse-resistance)

• Similar to ASCON/Spook (with ≠ init./final.)

14

ISAP (integrity)

• CIML2 (L in enc/dec, misuse-resistance)

• Similar to ASCON (need DPA-resistant tag verif.)

14

TEDT/TEDTSponge (confidentiality)

• CCAL1, CCAmL1

• Similar to ISAP with masked init./final.

15

TEDT/TEDTSponge (confidentiality)

• CCAmL2 (L in enc/dec, misuse-resilience)

• Tag verification with unbounded leakages

15

TEDT/TEDTSponge (integrity)

• CIL1, CIML1

• Similar to ISAP with masked init./final.

16

TEDT/TEDTSponge (integrity)

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification with unbounded leakages

16

Conclusion (I)

• What this discussion shows
• ∃ a tradeoff between mode-level and

implementation leakage-resistance
• As the security target and level increase, mode-

level leakage-resistance gains more interest

17

Conclusion (I)

• What this discussion shows
• ∃ a tradeoff between mode-level and

implementation leakage-resistance
• As the security target and level increase, mode-

level leakage-resistance gains more interest

• What this discussion suggests
• Using a strengthened init./final. for duplex sponges

17

Conclusion (I)

• What this discussion shows
• ∃ a tradeoff between mode-level and

implementation leakage-resistance
• As the security target and level increase, mode-

level leakage-resistance gains more interest

• What this discussion suggests
• Using a strengthened init./final. for duplex sponges

• What this discussion does not show (yet)
• Which candidate is best in which context?

• Security evaluations & implementation results
• Primitives matter (e.g., OCB-Pyjamask vs. OCB-AES)

17

Conclusion (II)

• What this discussion cannot show
• There is also a “simplicity vs. flexibility” tradeoff

• e.g., ISAP’s default implementation
+ offers some SCA security without masking
− is affected by primitive-based overheads

• Always there (even if SCAs are not a concern)

• e.g., Spook’s secure implementation
− requires masking for the highly protected block
+ is affected by implementation overheads

• Can be modulated (in function of the needs)

18

Conclusion (II)

• What this discussion cannot show
• There is also a “simplicity vs. flexibility” tradeoff

• e.g., ISAP’s default implementation
+ offers some SCA security without masking
− is affected by primitive-based overheads

• Always there (even if SCAs are not a concern)

• e.g., Spook’s secure implementation
− requires masking for the highly protected block
+ is affected by implementation overheads

• Can be modulated (in function of the needs)

+ Happy to discuss missing candidates (just contact me)
+ More discussion: https://www.youtube.com/watch?v=KdhrsuJT1sE

18

https://www.youtube.com/watch?v=KdhrsuJT1sE

15

OCB-
Pyjamask

CCAL1 CCAmL1 CCAmL2 CIL1 CIML1 CIML2

1-pass

init/final

bulk

verif.

msg.

PHOTON-
Beetle 1-pass

init/final

bulk

verif.

msg.

Ascon
1-pass

init/final

bulk

verif.

msg.

Spook
1-pass

init/final

bulk

verif.

msg.

ISAP

init/final

bulk

verif.

msg.

TEDT
Sponge

init/final

bulk

verif.

msg.

? ? ? ? ? ?

Bibliography

Side-channel countermeasures:
• Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi: Towards Sound Approaches

to Counteract Power-Analysis Attacks. CRYPTO 1999: 398-412
• Stefan Mangard: Hardware Countermeasures against DPA ? A Statistical Analysis of Their

Effectiveness. CT-RSA 2004: 222-235
• Christoph Herbst, Elisabeth Oswald, Stefan Mangard: An AES Smart Card Implementation

Resistant to Power Analysis Attacks. ACNS 2006: 239-252
• Stefan Dziembowski, Krzysztof Pietrzak: Leakage-Resilient Cryptography. FOCS 2008: 293-

302
• Gilles Piret, Thomas Roche, Claude Carlet: PICARO - A Block Cipher Allowing Efficient

Higher-Order Side-Channel Resistance. ACNS 2012: 311-328
• Olivier Pereira, François-Xavier Standaert, Srinivas Vivek: Leakage-Resilient Authentication and

Encryption from Symmetric Cryptographic Primitives. ACM Conference on Computer and
Communications Security 2015: 96-108

Side-channel countermeasures & security definitions:
• Guy Barwell, Daniel P. Martin, Elisabeth Oswald, Martijn Stam: Authenticated Encryption in the

Face of Protocol and Side Channel Leakage. ASIACRYPT (1) 2017: 693-723
• Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: Authenticated Encryption

with Nonce Misuse and Physical Leakage: Definitions, Separation Results and First Construction -
(Extended Abstract). LATINCRYPT 2019: 150-172

Bibliography

Countermeasures’ overheads:
• Dahmun Goudarzi, Matthieu Rivain: How Fast Can Higher-Order Masking Be in Software?

EUROCRYPT (1) 2017: 567-597
• Hannes Groß, Stefan Mangard, Thomas Korak: An Efficient Side-Channel Protected AES

Implementation with Arbitrary Protection Order. CT-RSA 2017: 95-112
• O. Bronchain, F.-X. Standaert, Side-Channel Countermeasures' Dissection and the Limits of

Closed Source Security Evaluations, cryptology e-Print archive, report 2019/1008
Leakage analyses:
• Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: TEDT,

a Leakage-Resilient AEAD mode for High (Physical) Security Applications. IACR Cryptology
ePrint Archive 2019: 137 (2019)

• Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: Towards Low-Energy
Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction. IACR
Cryptology ePrint Archive 2019: 193 (2019)

• Christoph Dobraunig, Bart Mennink: Leakage Resilience of the Duplex Construction. IACR
Cryptology ePrint Archive 2019: 225 (2019)

• Jean Paul Degabriele, Christian Janson, Patrick Struck: Sponges Resist Leakage: The Case of
Authenticated Encryption. IACR Cryptology ePrint Archive 2019: 1034 (2019)

https://eprint.iacr.org/2019/1008

Physical assumptions (I) A1

• Physical assumptions for the initialization
• Leak-Free components (LF) [PSV15]
• Strong Unpredictability with Leakage (SUL) [BGPPS19]

• Physical assumptions for the bulk computation
• Leak-Free components (LF) [PSV15]
• Oracle-Free + Hard-to-Invert Leakages (OFL+HIL) [YSPY10]

• (HIL can be replaced by bounded leakage [DP08])
• Simulatable Leakages (SimL) [SPY13]
• Only Computation Leaks (OCL) [DP08]
• Unbounded Leakages (UnbL) [BKPPS18]

Physical assumptions (II) A2

• Physical assumptions for the finalization
• Leak-Free components (LF) [PSV15]
• Strong Unpredictability with Leakage (SUL) [BGPPS19]

• Physical assumptions for the tag verification
• Leak-Free components (LF) [PSV15]

• (HIL is probably enough for this part)
• Unbounded Leakages (UnbL) [BKPPS18]

• (For leakage-resistant confidentiality, security can only be
reduced to the message confidentiality of a single block)

Aappendix bibliography

Physical assumptions (for symmetric cryptography):
• Stefan Dziembowski, Krzysztof Pietrzak: Leakage-Resilient Cryptography. FOCS 2008:

293-302
• Yu Yu, François-Xavier Standaert, Olivier Pereira, Moti Yung: Practical leakage-resilient

pseudorandom generators. ACM Conference on Computer and Communications
Security 2010: 141-151

• François-Xavier Standaert, Olivier Pereira, Yu Yu: Leakage-Resilient Symmetric
Cryptography under Empirically Verifiable Assumptions. CRYPTO (1) 2013: 335-352

• Olivier Pereira, François-Xavier Standaert, Srinivas Vivek: Leakage-Resilient
Authentication and Encryption from Symmetric Cryptographic Primitives. ACM
Conference on Computer and Communications Security 2015: 96-108

• Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, François-Xavier
Standaert: Ciphertext Integrity with Misuse and Leakage: Definition and Efficient
Constructions with Symmetric Primitives. AsiaCCS 2018: 37-50

• Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert:
Strong Authenticity with Leakage under Weak and Falsifiable Physical Assumptions,
Inscrypt 2019

	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

