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Side-channel countermeasures

1999: masking countermeasure [CJRR99]

2008: leakage-resilient stream cipher [DP08]

2006: shuffling countermeasure [HOS06]

2012: masking-optimized ciphers [PRC12]

2015: leakage-resilient enc. & auth. [PSV15]

2004: hardware countermeasures [M04]

2017-19: leakage-res. AE [BMOS17,GPPS19]
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This talk: difference in primitives (a bit) & modes (mostly)



Outline

1. How to reason about (AE) leakage?
• Specify the security target 
• Analyse the mode (& choose assumptions)

• Evaluate the implementation (& primitive)
≈ cost needed to fulfil the assumptions

2. Case studies: NIST candidates & more
• Level 0: no mode-level leakage-resistance
• Level 1: re-keyed modes (including sponges)
• Level 2: level 1 + strengthened init./final.
• Level 3: level 2 + two-passes 
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Security targets 

• Confidentiality: CPA, CCA security
• Plaintext Integrity (PI), Ciphertext Integrity (CI)

• Composite definitions useful: confidentiality & 
integrity often call for ≠ physical assumptions

• Leakage in encryption only (1) or enc./dec. (2)

• Nonce misuse-resistance (M) or resilience (m)

• Leakage-resistance (L) or resilience (l)

• Single/multi-user (beyond birthday?) security

• Selection depends on applications (e.g., software 
updates / control in hostile environment ⇒ CIML2)
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Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge
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Mode analysis (I)

• Identify main steps, e.g., inner keyed sponge

• (Some steps empty for some modes, ignoring AD)

3

initialization bulk computation finalization verif.



Mode analysis (II)

• Reduce the mode to (weak) assumptions (tightly)

4

leak-free components

strong unpredictability with leakage 

oracle-free leakages      […]

hard-to-invert leakages

bounded leakage 

simulatable leakages

only computation leaks



• Translate assumptions into necessary design goals

• Set the target security level (2𝑚 leakages, 2𝑡 time)

• Evaluate implementation cost & performances

DPA
(key recovery)

Practical evaluation (I) 5

DPA
(key recovery)

init./final. bulk comp. tag verif.

int.

conf.

DPA (key recovery)

SPA (key recovery)

unbounded leakages

DPA (tag recovery)

unbounded leakages

1-block conf.

DPA (key recovery)

SPA (key recovery) ∅



• Approximate performance overheads 

• DPA security: high-order masking, shuffling, …
• SPA security: parallel implementations, noise, …

x 5 – 10 – 100

Practical evaluation (II) 6
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int.

conf.
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x 1 – 5 

x 1
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x 1

1-block conf.

x 5 – 10 – 100
x 1 – 5 ∅



• Approximate performance overheads 

• Beware of too simple evaluation strategies!
• T-test negative with >100k traces, attack in <2000 traces

x 5 – 10 – 100

Practical evaluation (II) 6
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• Primitive/implementation SCA security only 
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OCB-Pyjamask

• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Needs DPA resistance for all E   blocks
• Primitive/implementation SCA security only 

• Others: SKINNY-AEAD, SUNDAE-GIFT, OCB-AES, …
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• Target: CCAL1, CIL1 (L in enc only, no misuse)

• Bulk computation only requires SPA security
• Light blue: no averaging is possible (fresh states)

• Calling for so-called leveled implementations 
• Energy gains thanks to 2 different implementations

PHOTON-Beetle 8



• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce 
misuse (idem with decryption leakages)
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• Target: CCAmL1, CIML1 (L in enc only, misuse)

• DPA security needed everywhere with nonce 
misuse (idem with decryption leakages)

• Others: Gimli, Ketje, Oribatida, …
• (Roughly applies to all inner-keyed sponges)

PHOTON-Beetle 8
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• Target: CCAL1 (L in enc only, no misuse)

• Similar to inner-keyed sponges
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• Target: CCAmL1 (L in enc only, misuse-resilience)

• Strengthened init./final. steps maintain the SPA 
resistance requirement for the bulk computation 
with nonce misuse and encryption leakages

Ascon (confidentiality) 9



• Target: CCAmL2 (L in enc/dec, misuse-resilience)

• Limited confidentiality with decryption leakages
• Dark orange/blue: message decrypted before 

verification ⇒ the same state can be repeatedly 
measured, allowing SPA with averaged leakage 

Ascon (confidentiality) 9



• Target: CIL1 (L in enc only, no misuse)

• Bulk computation leakage can be unbounded
• Shows interest of composite definitions! 

Ascon (integrity) 10



• Target: CIML1 (L in enc only, misuse-resistance)

• Same feature (unbounded leakages for the bulk) 
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• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!
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• Target: CIML2 (L in enc/dec, misuse-resistance)

• Tag verification must be protected against DPA
• Shows key recovery security is not enough!

• Others: ACE, GIBBON, Spix, WAGE, …

Ascon (integrity) 10



Spook – TETSponge (confidentiality)

• CCAL1, CCAmL1, CCAmL2, CIL1, CIML1

≈ further exploiting the leveled implementation concept

• Similar to ASCON (but smaller masked state)
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Spook – TETSponge (integrity) 

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification tolerates unbounded leakages
• (Inverse-free DPA resistant tag verif. also possible) 

• Others: TBC-only variant (TET)

12
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ISAP (confidentiality)

• CCAL1 (L in enc only, no misuse)

• DPA resistance via SPA-resistance (with averaging)?
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ISAP (confidentiality)

• CCAL1 (L in enc only, no misuse)

• If DPA-resistant RK, then similar to Ascon/Spook
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ISAP (confidentiality) 

• CCAmL1 (L in enc only, misuse-resilience)

• Not much change (averaging everywhere in RK)
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ISAP (confidentiality) 

• CCAmL2 (L in enc/dec, misuse-resilience)

• 2 pass ⇒ confidentiality in dec. if DPA-resistant verif.
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ISAP (integrity)

• CIL1 (L in enc only, no misuse)

• Similar to ASCON/Spook (with ≠ init./final.)
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ISAP (integrity) 

• CIML1 (L in enc only, misuse-resistance)

• Similar to ASCON/Spook (with ≠ init./final.)
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ISAP (integrity) 

• CIML2 (L in enc/dec, misuse-resistance)

• Similar to ASCON (need DPA-resistant tag verif.)
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TEDT/TEDTSponge (confidentiality)

• CCAL1, CCAmL1

• Similar to ISAP with masked init./final.
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TEDT/TEDTSponge (confidentiality) 

• CCAmL2 (L in enc/dec, misuse-resilience)

• Tag verification with unbounded leakages
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TEDT/TEDTSponge (integrity)

• CIML2 (L in enc/dec, misuse-resistance)

• Tag verification with unbounded leakages
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Conclusion (I)

• What this discussion shows
• ∃ a tradeoff between mode-level and 

implementation leakage-resistance
• As the security target and level increase, mode-

level leakage-resistance gains more interest 
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Conclusion (I)

• What this discussion shows
• ∃ a tradeoff between mode-level and 

implementation leakage-resistance
• As the security target and level increase, mode-

level leakage-resistance gains more interest 

• What this discussion suggests
• Using a strengthened init./final. for duplex sponges

• What this discussion does not show (yet)
• Which candidate is best in which context?

• Security evaluations & implementation results
• Primitives matter (e.g., OCB-Pyjamask vs. OCB-AES)
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Conclusion (II)

• What this discussion cannot show
• There is also a “simplicity vs. flexibility” tradeoff

• e.g., ISAP’s default implementation 
+ offers some SCA security without masking
− is affected by primitive-based overheads 

• Always there (even if SCAs are not a concern) 

• e.g., Spook’s secure implementation
− requires masking for the highly protected block
+ is affected by implementation overheads

• Can be modulated (in function of the needs)

18



Conclusion (II)

• What this discussion cannot show
• There is also a “simplicity vs. flexibility” tradeoff

• e.g., ISAP’s default implementation 
+ offers some SCA security without masking
− is affected by primitive-based overheads 

• Always there (even if SCAs are not a concern) 

• e.g., Spook’s secure implementation
− requires masking for the highly protected block
+ is affected by implementation overheads

• Can be modulated (in function of the needs)

+ Happy to discuss missing candidates (just contact me)
+ More discussion: https://www.youtube.com/watch?v=KdhrsuJT1sE
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https://www.youtube.com/watch?v=KdhrsuJT1sE
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Physical assumptions (I) A1

• Physical assumptions for the initialization
• Leak-Free components (LF) [PSV15]
• Strong Unpredictability with Leakage (SUL) [BGPPS19]

• Physical assumptions for the bulk computation
• Leak-Free components (LF) [PSV15]
• Oracle-Free + Hard-to-Invert Leakages (OFL+HIL) [YSPY10]

• (HIL can be replaced by bounded leakage [DP08])
• Simulatable Leakages (SimL) [SPY13]
• Only Computation Leaks (OCL) [DP08]
• Unbounded Leakages (UnbL) [BKPPS18]



Physical assumptions (II) A2

• Physical assumptions for the finalization
• Leak-Free components (LF) [PSV15]
• Strong Unpredictability with Leakage (SUL) [BGPPS19]

• Physical assumptions for the tag verification
• Leak-Free components (LF) [PSV15]

• (HIL is probably enough for this part)
• Unbounded Leakages (UnbL) [BKPPS18]

• (For leakage-resistant confidentiality, security can only be 
reduced to the message confidentiality of a single block)
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