
Anonymous, Robust Post-Quantum
Public Key Encryption

Varun Maram

Applied Cryptography Group

ETH Zurich

Joint work with Paul Grubbs and Kenneth G. Paterson

[Full version of paper: https://eprint.iacr.org/2021/708.pdf]

https://eprint.iacr.org/2021/708.pdf

NIST PQC Finalists

(Image taken from https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement)

https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement

NIST PQC Finalists

(Image taken from https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement)
(Image taken from https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf)

https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

IND-CCA Security

Alice Bob

𝑚 ← 𝐷𝑒𝑐(𝑠𝑘𝐵𝑜𝑏 , 𝑐)

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Eve
𝑚 = ?

Anonymity (ANO-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Dave

Carol

Eve
𝑝𝑘?

Anonymity (ANO-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Eve
𝑝𝑘?

Dave

Carol

Formalized in a public-key setting by
[Bellare-Boldyreva-Desai-Pointcheval’01].

Anonymity (ANO-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Eve
𝑝𝑘?

Dave

Carol

(Image taken from https://z.cash)

Formalized in a public-key setting by
[Bellare-Boldyreva-Desai-Pointcheval’01].

https://z.cash/

Anonymity (ANO-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Eve
𝑝𝑘?

Dave

Carol

(Image taken from https://z.cash)

(Image taken from https://digiday.com/marketing/ad-buyers-programmatic-auction/)

Formalized in a public-key setting by
[Bellare-Boldyreva-Desai-Pointcheval’01].

https://z.cash/
https://digiday.com/marketing/ad-buyers-programmatic-auction/

Anonymity (ANO-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
𝑐

Eve
𝑝𝑘?

Dave

Carol

𝑚 ← 𝐷𝑒𝑐(𝑠𝑘𝐵𝑜𝑏 , 𝑐)

𝑚′ ← 𝐷𝑒𝑐(𝑠𝑘𝐶𝑎𝑟𝑜𝑙 , 𝑐)

𝑚′′ ← 𝐷𝑒𝑐(𝑠𝑘𝐷𝑎𝑣𝑒 , 𝑐)

Robustness (SROB-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
Dave

Carol

𝑚 ← 𝐷𝑒𝑐(𝑠𝑘𝐵𝑜𝑏 , 𝑐)

⊥ ← 𝐷𝑒𝑐(𝑠𝑘𝐶𝑎𝑟𝑜𝑙 , 𝑐)

⊥ ← 𝐷𝑒𝑐(𝑠𝑘𝐷𝑎𝑣𝑒, 𝑐)

Robustness (SROB-CCA security)

Alice

Bob

𝑐

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑚

𝑐 ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)
Dave

Carol

𝑚 ← 𝐷𝑒𝑐(𝑠𝑘𝐵𝑜𝑏 , 𝑐)

⊥ ← 𝐷𝑒𝑐(𝑠𝑘𝐶𝑎𝑟𝑜𝑙 , 𝑐)

⊥ ← 𝐷𝑒𝑐(𝑠𝑘𝐷𝑎𝑣𝑒, 𝑐)

Formalized in a public-key setting by
[Abdalla-Bellare-Neven’10].

KEM-DEM Paradigm

KEM-DEM Paradigm

KEM DEM PKE

𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

IND-CCA secure

KEM-DEM Paradigm

KEM DEM PKE

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

IND-CCA secure IND-CCA secure

KEM-DEM Paradigm

KEM DEM PKE

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

(one-time) IND-CCA secureIND-CCA secure IND-CCA secure

KEM-DEM Paradigm

KEM DEM
PKE

(Hybrid)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

(one-time) IND-CCA secureIND-CCA secure IND-CCA secure

KEM-DEM Paradigm

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀 , 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

(one-time) IND-CCA secureIND-CCA secure IND-CCA secure

KEM-DEM Paradigm

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀 , 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

(one-time) IND-CCA secureIND-CCA secure IND-CCA secure

Indistinguishable
from a uniformly

random 𝐷𝐸𝑀 key 𝑘′

{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

Random Oracles{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

Quantum Random Oracles{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

Quantum Random Oracles{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

𝛼 ۧ|𝑥 + 𝛽 ۧ|𝑦

Quantum Random Oracles{OW/IND}-CPA secure

Fujisaki-Okamoto Transformation

PKE
(Base)

Hash
funcs. 𝐻𝑖

KEM

IND-CCA secure

𝛼 ۧ|𝑥 + 𝛽 ۧ|𝑦 𝛼 ۧ|𝐻𝑖(𝑥) + 𝛽 ۧ|𝐻𝑖(𝑦)

Fujisaki-Okamoto Transformation

Fujisaki-Okamoto Transformation

Fujisaki-Okamoto Transformation

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

https://eprint.iacr.org/2021/708.pdf

Fujisaki-Okamoto Transformation

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

https://eprint.iacr.org/2021/708.pdf

Fujisaki-Okamoto Transformation

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

https://eprint.iacr.org/2021/708.pdf

[Jiang-Zhang-Chen-Wang-Ma’18] showed the
IND-CCA security of KEMs obtained from these
two “standard” FO transforms in the QROM.

Fujisaki-Okamoto Transformation

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

https://eprint.iacr.org/2021/708.pdf

Fujisaki-Okamoto Transformation

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

[Jiang-Zhang-Chen-Wang-Ma’18] showed the
IND-CCA security of KEMs obtained from these
two “standard” FO transforms in the QROM.

https://eprint.iacr.org/2021/708.pdf

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

Anonymity from FO transforms

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

Anonymity from FO transforms

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

Status of NTRU (which uses a close variant of) with respect to
anonymity and robustness properties is open.

NTRU

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

The base PKE scheme needs to randomized (specifically, 𝛾-spread).

Classic McEliece (CM)

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

The base PKE scheme needs to randomized (specifically, 𝛾-spread).

Classic McEliece (CM)

CM uses a deterministic base PKE scheme.

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

• (𝑛 − 𝑘 ≥ 𝑡 in all CM parameters)

• 𝐶0 = 𝐼𝑛−𝑘 𝑇
𝑒𝑛−𝑘
0𝑘

= 𝑒𝑛−𝑘 -- i.e., independent of public-key 𝑇.

• Because of CM’s perfect correctness, 𝐶0 must decrypt to fixed 𝑒 under

any private key of CM’s base PKE scheme.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

Fix any “message” 𝑒 =
𝑒𝑛−𝑘
0𝑘

:

• (𝑛 − 𝑘 ≥ 𝑡 in all CM parameters)

• 𝐶0 = 𝐼𝑛−𝑘 𝑇
𝑒𝑛−𝑘
0𝑘

= 𝑒𝑛−𝑘 -- i.e., independent of public-key 𝑇.

• Because of CM’s perfect correctness, 𝐶0 must decrypt to fixed 𝑒 under any
private key of CM’s base PKE scheme.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

Fix any “message” 𝑒 =
𝑒𝑛−𝑘
0𝑘

:

• (𝑛 − 𝑘 ≥ 𝑡 in all CM parameters)

• 𝐶0 = 𝐼𝑛−𝑘 𝑇
𝑒𝑛−𝑘
0𝑘

= 𝑒𝑛−𝑘 -- i.e., independent of public-key 𝑇.

• Because of CM’s perfect correctness, 𝐶0 must decrypt to fixed 𝑒 under any
private key of CM’s base PKE scheme.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

Fix any “message” 𝑒 =
𝑒𝑛−𝑘
0𝑘

:

• (𝑛 − 𝑘 ≥ 𝑡 in all CM parameters)

• 𝐶0 = 𝐼𝑛−𝑘 𝑇
𝑒𝑛−𝑘
0𝑘

= 𝑒𝑛−𝑘 – i.e., independent of public-key 𝑇.

• Because of CM’s perfect correctness, 𝐶0 must decrypt to fixed 𝑒 under any
private key of CM’s base PKE scheme.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

Fix any “message” 𝑒 =
𝑒𝑛−𝑘
0𝑘

:

• (𝑛 − 𝑘 ≥ 𝑡 in all CM parameters)

• 𝐶0 = 𝐼𝑛−𝑘 𝑇
𝑒𝑛−𝑘
0𝑘

= 𝑒𝑛−𝑘 – i.e., independent of public-key 𝑇.

• Because of perfect correctness, 𝐶0 must decrypt to fixed 𝑒 under any private
key of CM’s base PKE scheme.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

Classic McEliece (CM)

KEM DEM
PKE

(Hybrid)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

For any message 𝑚:

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

For any message 𝑚:

• Fix vector 𝑒 =
𝑒𝑛−𝑘
0𝑘

.

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

For any message 𝑚:

• Fix vector 𝑒 =
𝑒𝑛−𝑘
0𝑘

.

• Set 𝐶0 = 𝑒𝑛−𝑘, 𝐶1= H(2, 𝑒) and 𝑐𝐾𝐸𝑀 ← (𝐶0, 𝐶1).
• Compute 𝑘 = H(1, 𝑒, 𝑐𝐾𝐸𝑀) and 𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚).
• Return 𝑐 ← (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀).

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

For any message 𝑚:

• Fix vector 𝑒 =
𝑒𝑛−𝑘
0𝑘

.

• Set 𝐶0 = 𝑒𝑛−𝑘, 𝐶1= H(2, 𝑒) and 𝑐𝐾𝐸𝑀 ← (𝐶0, 𝐶1).
• Compute 𝑘 = H(1, 𝑒, 𝑐𝐾𝐸𝑀) and 𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚).
• Return 𝑐 ← (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀).

For any CM private key 𝑠𝑘∗ ,

https://classic.mceliece.org/nist/mceliece-20201010.pdf

Classic McEliece (CM)

(Image taken from https://classic.mceliece.org/nist/mceliece-20201010.pdf)

KEM DEM
PKE

(Hybrid)

𝑐𝐾𝐸𝑀, 𝑘 ← 𝐸𝑛𝑐𝑎𝑝(𝑝𝑘𝐵𝑜𝑏)

𝐾𝐸𝑀 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐𝑎𝑝, 𝐷𝑒𝑐𝑎𝑝) 𝐷𝐸𝑀 = (𝐸𝑛𝑐𝑠𝑦𝑚, 𝐷𝑒𝑐𝑠𝑦𝑚) 𝑃𝐾𝐸 = (𝐾𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚) (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀) ← 𝐸𝑛𝑐(𝑝𝑘𝐵𝑜𝑏, 𝑚)

For any message 𝑚:

• Fix vector 𝑒 =
𝑒𝑛−𝑘
0𝑘

.

• Set 𝐶0 = 𝑒𝑛−𝑘, 𝐶1= H(2, 𝑒) and 𝑐𝐾𝐸𝑀 ← (𝐶0, 𝐶1).
• Compute 𝑘 = H(1, 𝑒, 𝑐𝐾𝐸𝑀) and 𝑐𝐷𝐸𝑀 ← 𝐸𝑛𝑐𝑠𝑦𝑚(𝑘,𝑚).
• Return 𝑐 ← (𝑐𝐾𝐸𝑀, 𝑐𝐷𝐸𝑀).

For any CM private key 𝑠𝑘∗ ,
𝐷𝑒𝑐 𝑠𝑘∗, 𝑐 = 𝑚 (≠ ⊥).

https://classic.mceliece.org/nist/mceliece-20201010.pdf

• Anonymity of CM can possibly be proven by other “more direct” approaches.

• However, the lack of strong robustness in hybrid PKE schemes derived from CM
may prove to be a significant problem in applications requiring anonymity, e.g.,
auction protocols, anonymous communication (see [Abdalla-Bellare-Neven’10]).

Since CM closely follows the transform to construct its KEM, the analysis of
[Jiang-Zhang-Chen-Wang-Ma’18] can easily be extended to the finalist to obtain

(relatively) tight security bounds in the QROM.

Classic McEliece (CM)

• Anonymity of CM can possibly be proven by other “more direct” approaches.

We’re NOT indicating any problems with IND-CCA security of CM.

Classic McEliece (CM)

Since CM closely follows the transform to construct its KEM, the analysis
of [Jiang-Zhang-Chen-Wang-Ma’18] can be extended to CM to obtain

(relatively) tight security bounds in the QROM.

• Anonymity of CM can possibly be proven by other “more direct” approaches.

We’re NOT indicating any problems with IND-CCA security of CM.

Classic McEliece (CM)

SaberCore vs Saber

SaberCore: the “core” scheme Saber: the “actual” implemented scheme

SaberCore vs Saber

SaberCore: the “core” scheme Saber: the “actual” implemented scheme

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

“𝑘 ← 𝐻(෠𝑘, 𝐻(𝑐))"

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore vs Saber

SaberCore: the “core” scheme Saber: the “actual” implemented scheme

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

“𝑘 ← 𝐻(෠𝑘, 𝐻(𝑐))"
(Thanks to Peter Schwabe.)

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://eprint.iacr.org/2018/230.pdf)
[D’Anvers-Karmakar-Roy-Vercauteren’18]

https://eprint.iacr.org/2018/230.pdf

[Saber’s specification document]

SaberCore

(Image taken from https://eprint.iacr.org/2018/230.pdf)
(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

[D’Anvers-Karmakar-Roy-Vercauteren’18]

https://eprint.iacr.org/2018/230.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

SaberCore

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://eprint.iacr.org/2021/708.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

SaberCore

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://eprint.iacr.org/2021/708.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and

• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of

encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and

• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of

encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and
• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of

encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and
• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of

underlying encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and
• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of

underlying encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• However, in SaberCore:
• Encapsulated keys derived as "𝑘 ← 𝐻(෠𝑘, 𝑐)" (cf. "𝑘 ← 𝐻(𝑚, 𝑐)" of)
• with “pre-key” ෠𝑘 derived as a hash of 𝑚 – i.e., "(෠𝑘, 𝑟) ← 𝐺(𝐹(𝑝𝑘),𝑚)".
• Essentially, there is a “nested” hashing of 𝑚 in the key-derivation.
• Need some additional “injectivity” arguments to use the trick of [Jiang-Zhang-

Chen-Wang-Ma’18].
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• However, in SaberCore:
• Encapsulated keys derived as "𝑘 ← 𝐻(෠𝑘, 𝑐)" (cf. "𝑘 ← 𝐻(𝑚, 𝑐)" of)
• with “pre-key” ෠𝑘 derived as a hash of 𝑚 – i.e., "(෠𝑘, 𝑟) ← 𝐺(𝐹(𝑝𝑘),𝑚)".
• Essentially, there is a “nested” hashing of 𝑚 in the key-derivation.
• Need some additional “injectivity” arguments to use the trick of [Jiang-Zhang-

Chen-Wang-Ma’18].
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• However, in SaberCore:
• Encapsulated keys derived as "𝑘 ← 𝐻(෠𝑘, 𝑐)" (cf. "𝑘 ← 𝐻(𝑚, 𝑐)" of)
• with “pre-key” ෠𝑘 derived as a hash of 𝑚 – i.e., "(෠𝑘, 𝑟) ← 𝐺(𝐹(𝑝𝑘),𝑚)".
• Essentially, there is a “nested” hashing of 𝑚 in the key-derivation.
• Need some additional injectivity arguments to use the trick of [Jiang-Zhang-

Chen-Wang-Ma’18].
We were able to adapt the simulation trick to Saber, by observing that the nested

hashing of 𝑚 is length-preserving, i.e., 𝑚 ∈ {0,1}256 and ෠𝑘 ∈ {0,1}256.

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

• In such a reduction, we need to simulate the decapsulation oracle in the QROM
without possessing the secret key.

• However, in SaberCore:
• Encapsulated keys derived as "𝑘 ← 𝐻(෠𝑘, 𝑐)" (cf. "𝑘 ← 𝐻(𝑚, 𝑐)" of)
• with “pre-key” ෠𝑘 derived as a hash of 𝑚 – i.e., "(෠𝑘, 𝑟) ← 𝐺(𝐹(𝑝𝑘),𝑚)".
• Essentially, there is a “nested” hashing of 𝑚 in the key-derivation.
• Need some additional injectivity arguments to use the trick of [Jiang-Zhang-

Chen-Wang-Ma’18].
We were able to adapt the simulation trick to SaberCore, by observing that the
nested hashing of 𝑚 is length-preserving, i.e., 𝑚 ∈ {0,1}256 and ෠𝑘 ∈ {0,1}256.

SaberCore

(Image taken from https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf)

https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

SaberCore

• Our approach to “recover” IND-CCA security of SaberCore, with the
same tightness as claimed in its third-round specification, also led to:

• Our approach to “recover” IND-CCA security of SaberCore, with the
same tightness as claimed in its third-round specification, also led to:

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from SaberCore via the generic KEM-DEM
composition in the QROM are:

• ANO-CCA secure, and

SaberCore

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from SaberCore via the generic KEM-DEM
composition in the QROM are:

• ANO-CCA secure, and

• SROB-CCA secure, provided the DEM satisfies an appropriate notion of
robustness.

SaberCore

• Our approach to “recover” IND-CCA security of SaberCore, with the
same tightness as claimed in its third-round specification, also led to:

FrodoKEM

(Image taken from https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement)

FrodoKEM uses the same FO-type
transform as SaberCore.

https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement

FrodoKEM

(Image taken from https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement)

FrodoKEM uses the same FO-type
transform as SaberCore.

We expect our results on SaberCore to
be applicable to the “actual” FrodoKEM.

https://www.nist.gov/news-events/news/2020/07/pqc-standardization-process-third-round-candidate-announcement

(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from KEMs via the generic KEM-DEM
composition are also ANO-CCA secure in the QROM.*

(*Provided the base PKE scheme satisfies some additional mild security properties.)

CRYSTALS-KYBER and Saber use a transform that deviates even further
from when compared to SaberCore/FrodoKEM.

CRYSTALS-KYBER, Saber

CRYSTALS-KYBER, Saber

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

SaberCore

https://eprint.iacr.org/2021/708.pdf

CRYSTALS-KYBER, Saber

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

SaberCore

CRYSTALS-KYBER, Saber

https://eprint.iacr.org/2021/708.pdf

• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

CRYSTALS-KYBER, Saber

• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness
analysis of SaberCore to the schemes.

CRYSTALS-KYBER, Saber

• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness
analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of
SaberCore/FrodoKEM:

CRYSTALS-KYBER, Saber

• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness
analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of
SaberCore/FrodoKEM:

• Because we recover a corresponding tight IND-CCA security proof in the QROM,

CRYSTALS-KYBER, Saber

• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness
analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of
SaberCore/FrodoKEM:

• Because we recover a corresponding tight IND-CCA security proof in the QROM,

• and obtain similarly tight security proofs of anonymity and robustness.

CRYSTALS-KYBER, Saber

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

• SaberCore results in anonymous (and robust, for appropriate DEMs) hybrid PKE schemes
in the QROM. Along the way, we repaired technical gaps in the IND-CCA security claims
of SaberCore in the QROM. Our results should similarly apply to the FrodoKEM.

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

• SaberCore results in anonymous (and robust, for appropriate DEMs) hybrid PKE schemes
in the QROM. Along the way, we repaired technical gaps in the IND-CCA security claims
of SaberCore in the QROM. Our results should similarly apply to the FrodoKEM.

• However, the “actual” Saber differs from SaberCore and uses the same FO-type
transform as that of CRYSTALS-KYBER. And this transform has similar issues with its
concrete IND-CCA security in the QROM.

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

• SaberCore results in anonymous (and robust, for appropriate DEMs) hybrid PKE schemes
in the QROM. Along the way, we repaired technical gaps in the IND-CCA security claims
of SaberCore in the QROM. Our results should similarly apply to the FrodoKEM.

• However, the “actual” Saber differs from SaberCore and uses the same FO-type
transform as that of CRYSTALS-KYBER. And this transform has similar issues with its
concrete IND-CCA security in the QROM.

• We suggest CRYSTALS-KYBER and Saber, in essence, use the same transform as
SaberCore/FrodoKEM.

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

• SaberCore results in anonymous (and robust, for appropriate DEMs) hybrid PKE schemes
in the QROM. Along the way, we repaired technical gaps in the IND-CCA security claims
of SaberCore in the QROM. Our results should similarly apply to the FrodoKEM.

• However, the “actual” Saber differs from SaberCore and uses the same FO-type
transform as that of CRYSTALS-KYBER. And this transform has similar issues with its
concrete IND-CCA security in the QROM.

• We suggest CRYSTALS-KYBER and Saber, in essence, use the same transform as
SaberCore/FrodoKEM.

• Determining anonymity and robustness of NTRU is an open question.

Conclusions

• Hybrid PKE schemes derived from Classic McEliece, via the generic KEM-DEM
composition, are not strongly robust.

• SaberCore results in anonymous (and robust, for appropriate DEMs) hybrid PKE schemes
in the QROM. Along the way, we repaired technical gaps in the IND-CCA security claims
of SaberCore in the QROM. Our results should similarly apply to the FrodoKEM.

• However, the “actual” Saber differs from SaberCore and uses the same FO-type
transform as that of CRYSTALS-KYBER. And this transform has similar issues with its
concrete IND-CCA security in the QROM.

• We suggest CRYSTALS-KYBER and Saber, in essence, use the same transform as
SaberCore/FrodoKEM.

• Determining anonymity and robustness of NTRU is an open question.

Conclusions

Need to re-evaluate the IND-CCA security claims of the finalists in the QROM.

