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• Anonymity of CM can possibly be proven by other “more direct” approaches.

• However, the lack of strong robustness in hybrid PKE schemes derived from CM 
may prove to be a significant problem in applications requiring anonymity, e.g., 
auction protocols, anonymous communication (see [Abdalla-Bellare-Neven’10]). 

Since CM closely follows the          transform to construct its KEM, the analysis of 
[Jiang-Zhang-Chen-Wang-Ma’18] can easily be extended to the finalist to obtain 

(relatively) tight security bounds in the QROM.
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“𝑘 ← 𝐻(෠𝑘, 𝐻(𝑐))"
(Thanks to Peter Schwabe.)
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(Image taken from https://eprint.iacr.org/2018/230.pdf)
[D’Anvers-Karmakar-Roy-Vercauteren’18]
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[Saber’s specification document]
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(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from         KEMs via the generic KEM-DEM 
composition are also ANO-CCA secure in the QROM.* 

(*Provided the base PKE scheme satisfies some additional mild security properties.) 
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• In such a reduction, we need to simulate the decapsulation oracle in the QROM 
without possessing the secret key.

• Trick used in [Jiang-Zhang-Chen-Wang-Ma’18] w.r.t. :
• Replace key-derivation "𝑘 ← 𝐻(𝑚, 𝑐)" with "𝑘 ← 𝐻′(𝑐)", where

• 𝑐 = 𝑔 𝑚 = 𝐸𝑛𝑐 𝑝𝑘,𝑚; 𝐺 𝑚 is the deterministic encryption of 𝑚 and

• 𝐻′ is a secret random oracle.
• Replacement is justified by the injectivity of 𝑔(∙), relying on the correctness of 

encryption.
• Effectively, 𝐷𝑒𝑐𝑎𝑝(𝑠𝑘, 𝑐) can be simulated by returning 𝐻′(𝑐).
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FrodoKEM uses the same FO-type 
transform as SaberCore.

We expect our results on SaberCore to 
be applicable to the “actual” FrodoKEM.
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(Informal) Theorem [Grubbs-Maram-Paterson’21]:

Hybrid PKE schemes obtained from         KEMs via the generic KEM-DEM 
composition are also ANO-CCA secure in the QROM.* 

(*Provided the base PKE scheme satisfies some additional mild security properties.) 

CRYSTALS-KYBER and Saber use a transform that deviates even further 
from          when compared to SaberCore/FrodoKEM.

CRYSTALS-KYBER, Saber



CRYSTALS-KYBER, Saber

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

SaberCore

https://eprint.iacr.org/2021/708.pdf


CRYSTALS-KYBER, Saber

(Image taken from https://eprint.iacr.org/2021/708.pdf [Grubbs-Maram-Paterson’21])

SaberCore

CRYSTALS-KYBER, Saber

https://eprint.iacr.org/2021/708.pdf


• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA 
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

CRYSTALS-KYBER, Saber



• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA 
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness 
analysis of SaberCore to the schemes.

CRYSTALS-KYBER, Saber



• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA 
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness 
analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of 
SaberCore/FrodoKEM:

CRYSTALS-KYBER, Saber



• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
derivation "𝑘 ← 𝐾𝐷𝐹(෠𝑘, 𝐹(𝑐))" acts as a barrier w.r.t. establishing the IND-CCA 
security of CRYSTALS-KYBER and Saber in the QROM with the claimed tightness.

• Also acts as a barrier in our attempts to extend the anonymity and robustness 
analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of 
SaberCore/FrodoKEM:

• Because we recover a corresponding tight IND-CCA security proof in the QROM,

CRYSTALS-KYBER, Saber



• The “nested” (compressing) hash of ciphertext, namely "𝐹(𝑐)", in the key-
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analysis of SaberCore to the schemes.

We suggest CRYSTALS-KYBER and Saber use the same FO-type transform of 
SaberCore/FrodoKEM:

• Because we recover a corresponding tight IND-CCA security proof in the QROM,

• and obtain similarly tight security proofs of anonymity and robustness. 

CRYSTALS-KYBER, Saber
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concrete IND-CCA security in the QROM.

• We suggest CRYSTALS-KYBER and Saber, in essence, use the same transform as 
SaberCore/FrodoKEM.

• Determining anonymity and robustness of NTRU is an open question. 

Conclusions

Need to re-evaluate the IND-CCA security claims of the finalists in the QROM. 


