
Benchmarking Round 2 Candidates 
on Microcontrollers

NIST Lightweight Cryptography Workshop
October 19, 2020

Çağdaş Çalık*, Munawar Hasan*, Jinkeon Kang*

* Guest Researcher, NIST Updated on Nov 18, 2020



• Motivation and Scope

• Implementations, Platforms, Test Cases

• The Benchmarking Framework

• Results

• Conclusion and Next Steps

2

Outline

Commercial equipment and software referred to in this paper are identified for informational purposes only and does not imply
recommendation of or endorsement by the National Institute of Standards and Technology, nor does it imply that the products so identified
are necessarily the best available for the purpose.



• Motivation
• Evaluate the performance of Round 2 candidates on microcontrollers

• Compare the candidates against existing NIST standards

• Goals
• High coverage of implementations

• Wide range of test cases

• Verification of the implementations and results

• Scope
• API compatible implementations

• Official versions of the algorithms 

• This presentation: only primary variants

3

Motivation and Scope



• Implementations were gathered from 

• Submission packages

• Websites and GitHub repositories of the candidates

• Third party software benchmarking projects

4

Implementations

Language* AEAD
(89 Variants)

Hash
(19 Variants)

Total
AEAD-Primary
(32 Variants)

Hash-Primary 
(12 Variants)

C 161 41 202 66 27

C / AVR 73 15 88 26 10

C / ARM / AVR 9 4 13 3 2

ARM 35 4 39 18 4

AVR 19 16 35 7 7

Total 297 80 377 120 50

* Languages used in a single implementation folder



• Primary variants of COMET*, ESTATE, mixFeed, and SAEAES* have only reference
implementations.

• Problems faced in the benchmarking process

• Build errors

• Decryption failures

• Program crash 

• Unsupported input sizes

• Test vector verification failures

5

Implementations - Remarks

* Uses T-table based AES implementation.



Board Microcontroller / Core Frequency Flash SRAM

Arduino Uno Rev3 ATmega328P - AVR (8-bit) 16 MHz 32 KB 2 KB

Arduino Nano Every ATMega4809 - AVR (8-bit) 20 MHz 48 KB 6 KB

Arduino MKR Zero SAMD21 - ARM Cortex-M0+ (32-bit) 48 MHz 256 KB 32 KB

Arduino Due AT91SAM3X8E - ARM Cortex-M3 (32-bit) 84 MHz 512 KB 96 KB

Arduino Nano 33 BLE nRF52840 - ARM Cortex-M4F (32-bit) 64 MHz 1 MB 256 KB

HiFive1 Rev B SiFive FE310-G002 - RV32 IMAC (32-bit) 320 MHz 4 MB 16 KB

6

Platforms

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://sifive.com/chip-designer#fe310


Board Microcontroller / Core Frequency Flash SRAM

Arduino Uno Rev3 ATmega328P - AVR (8-bit) 16 MHz 32 KB 2 KB

Arduino Nano Every ATMega4809 - AVR (8-bit) 20 MHz 48 KB 6 KB

Arduino MKR Zero SAMD21 - ARM Cortex-M0+ (32-bit) 48 MHz 256 KB 32 KB

Arduino Due AT91SAM3X8E - ARM Cortex-M3 (32-bit) 84 MHz 512 KB 96 KB

Arduino Nano 33 BLE nRF52840 - ARM Cortex-M4F (32-bit) 64 MHz 1 MB 256 KB

HiFive1 Rev B SiFive FE310-G002 - RV32 IMAC (32-bit) 320 MHz 4 MB 16 KB

7

Platforms

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://sifive.com/chip-designer#fe310


• Time 

• Varying input sizes for Plaintext and Associated Data for AEAD and Hash functions

• Short inputs: ranging from 0 to 128 bytes 

• Long inputs*: ranging from 256 to 2048 bytes with 128-byte increments

• Size

• For AEAD algorithms, the sizes for enc-only, dec-only implementations are calculated.

• Actual sizes are calculated by taking the difference w.r.t. the empty cipher.

8

Test Cases

*Omitted for AVR.



• The framework consists of C++ code for carrying out the experiments, and scripts for automating 
the build process and post-processing the results.

• It uses the PlatformIO embedded development platform and the GNU toolchains1,2,3.

9

The Benchmarking Framework

KAT Verification

Utilities

Timing

Code Size

Modes

KAT File

Timing Results

Code Size Results

Raw Results

Po
st

 -
p

ro
ce

ss
in

g

AEAD
Wrapper

AEAD
Implementation

Hash
Wrapper

Hash
Implementation

Implementation Under Test

1 (GNU Tools for Arm Embedded Processors 7-2017-q4-major) 7.2.1 20170904 (release) [ARM/embedded-7-branch revision 255204]
2 (GNU MCU Eclipse ARM Embedded GCC, 64-bit) 8.2.1 20181213 (release) [gcc-8-branch revision 267074]
3 (AVR_8_bit_GNU_Toolchain_3.6.2_1759) 5.4.0



10

Build Configurations

AEAD-Impl1
.
.
.

AEAD-Impl120

Hash-Impl1
.
.
.

Hash-Impl50

Implementation Mode PlatformFlags

X
LWC_MODE_GENKAT_AEAD

LWC_MODE_TIMING_AEAD

LWC_MODE_USE_AEAD_ENCRYPT

LWC_MODE_USE_AEAD_DECRYPT

LWC_MODE_USE_AEAD_BOTH

X
LWC_MODE_GENKAT_HASH

LWC_MODE_TIMING_HASH

LWC_MODE_USE_HASH

X

Arduino MKR Zero
Arduino Uno

Arduino Nano 33 BLE
.
.
.

X

-Os

-O1

-O2

-O3



• Code size (AEAD & Hash)

• Timing (AEAD & Hash)

• Pairwise-comparison of AEAD algorithms against AES-GCM (AEAD only)

• Benchmarks include AES-GCM and SHA-256 from Mbed-TLS library for 
comparison.

11

Benchmark Results



12

Code Size for Primary AEAD Variants* on Cortex-M0+

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags



13

Code Size for Primary AEAD Variants* on Cortex-M4F

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags



14

Code Size for Primary AEAD Variants* on AVR

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags



15

Timings for Primary AEAD Variants* on Cortex-M0+
(AD Length=0, Msg Length=16, 64, 2048)

The value over each bar is for Mlen = 2048

* Fastest implementation of each variant among all its implementations compiled with four different optimization flags

Mlen = 16

Mlen = 64

Mlen = 2048



16

Timings for Primary AEAD Variants* on Cortex-M4F
(AD Length=0, Msg Length=16, 64, 2048)

The value over each bar is for Mlen = 2048

* Fastest implementation of each variant among all its implementations compiled with four different optimization flags

Mlen = 16

Mlen = 64

Mlen = 2048



17

Timings for Primary AEAD Variants* on AVR
(AD Length=0, Msg Length=16, 32, 128)

The value over each bar is for Mlen = 128

* Fastest implementation of each variant among all its implementations compiled with four different optimization flags

Mlen = 16

Mlen = 32

Mlen = 128



• A 2D plot is created by comparing the execution times of two AEAD 
algorithms for each Plaintext and Associated Data length from 0 to 128 
bytes.

18

Pairwise Comparison of AEAD Algorithms

-1 0 1

Alg. 1 is faster Alg. 2 is faster



19

Primary AEAD Variants1 v. AES-GCM2 on Cortex-M0+

ASCON COMET DryGASCON Elephant ESTATE ForkAE GIFT-COFB

Gimli Grain-128AEAD HyENA ISAP KNOT LOTUS-LOCUS mixFeed ORANGE

Oribatida PHOTON-Beetle Pyjamask Romulus SAEAES Saturnin SKINNY-AEAD SPARKLE

SPIX SpoC Spook Subterranean 2.0 SUNDAE-GIFT TinyJambu WAGE Xoodyak

1 The fastest implementation of each variant. 2 Mbed TLS implementation with MBEDTLS_AES_ROM_TABLES and MBEDTLS_AES_FEWER_TABLES defined.

ACE



20

Primary AEAD Variants1 v. AES-GCM2 on Cortex-M4F

ASCON COMET DryGASCON Elephant ESTATE ForkAE GIFT-COFB

Gimli Grain-128AEAD HyENA ISAP KNOT LOTUS-LOCUS mixFeed ORANGE

Oribatida PHOTON-Beetle Pyjamask Romulus SAEAES Saturnin SKINNY-AEAD SPARKLE

SPIX SpoC Spook Subterranean 2.0 SUNDAE-GIFT TinyJambu WAGE Xoodyak

1 The fastest implementation of each variant. 2 Mbed TLS implementation with MBEDTLS_AES_ROM_TABLES and MBEDTLS_AES_FEWER_TABLES defined.

ACE



21

Code Size for Primary Hash Variants* on Cortex-M0+

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags.



22

Code Size for Primary Hash Variants* on Cortex-M4F

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags.



23

Code Size for Primary Hash Variants* Variants on AVR

* Smallest sized implementation of each variant among all its implementations compiled with four different optimization flags.



24

Timings for Primary Hash Variants* on Cortex-M0+
(Msg Length=16, 64, 2048)

Mlen = 16

Mlen = 64

Mlen = 2048

* Fastest implementation of each variant among all its implementations compiled with four different optimization flags

The value over each bar is for Mlen = 2048



25

Timings for Primary Hash Variants* on Cortex-M4F
(Msg Length=16, 64, 2048)

Mlen = 16

Mlen = 64

Mlen = 2048

* Fastest implementation of each variant among all its implementations compiled with four different optimization flags

The value over each bar is for Mlen = 2048



Benchmarking is challenging, due to the range of platforms, implementation tradeoffs, and 
different use cases.

AEAD

• Most of the candidates achieved smaller code size compared to AES-GCM*.

• On ARM Cortex-M0+ about half of the candidates and on ARM Cortex-M4F most 
candidates showed performance improvement at least in some of the test cases over 
AES-GCM* .

Hash

• Depending on the platform, four to seven candidates had smaller code size than SHA-
256*.

• Most of the candidates performed worse compared to SHA-256 in timing experiments.

26

Summary of Results

* Mbed TLS implementation.



• Fair and extensive performance evaluation of the candidates on microcontrollers will contribute 
to the selection of the finalists.

• The benchmark results published by the submitters, third party benchmarking projects, and 
academic papers are also taken into consideration in the evaluation process.

• The benchmarking framework and the results will be available at: 
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

• Next Steps

• Keep the implementation database up to date

• Resolve the issues for implementations where benchmarking could not be performed

• Add new platforms

• Verify and publish the results

27

Conclusion and Next Steps

https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking


Project webpage: https://csrc.nist.gov/projects/lightweight-cryptography

GitHub: https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

Forum: lwc-forum@list.nist.gov

Contact email: lightweight-crypto@nist.gov

28

Contact

https://csrc.nist.gov/projects/lightweight-cryptography
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
mailto:lwc-forum@list.nist.gov
mailto:lightweight-crypto@nist.gov

