# Boosting the Hybrid Attack on NTRU: Torus LSH, Permuted HNF and Boxed Sphere

## Phong Nguyễn









## **Targets**

#### **ONTRU**

 Any lattice cryptosystem using q-ary lattices with very short vectors: binary LWE, etc.

## The Hybrid Attack

- Introduced by [HG-2007] to combine Odlyzko's meet-in-the-middle attack with lattice reduction.
- Sometimes the best attack on NTRU,
   e.g. some settings of NTRU-HSS.
- Arguably "poorly" understood.

#### Our Results

- Improve the hybrid attack and its analysis
  - o Easier to implement, more efficient
  - o Less heuristic analysis
  - o Bigger experiments
- Probabilistic analysis of Babai's nearest plane algorithm

## Application to NTRU

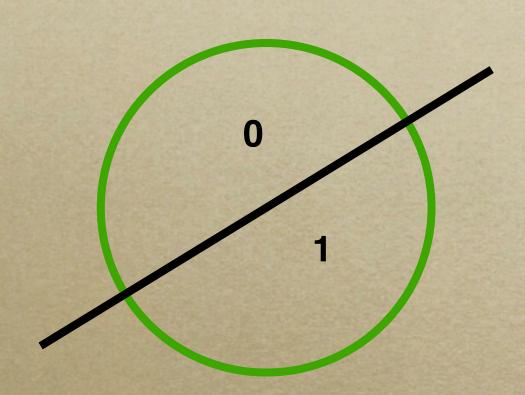
 NTRU's security estimates for the hybrid attack are wrong: overestimating both the success probability and the MITM cost.

|                        | hps2048509 | hps2048677 | hps4096821 |
|------------------------|------------|------------|------------|
| MITM cost overestimate | 28         | 216        | 23         |
| Proba overestimate     | [246,276]  | [255,289]  | [272,2115] |

#### NTRU Submission Issues

- Inconsistency with NTRU scripts:
   different values of s; swap of f and g.
- No rationale for several conditions
  - ||b<sub>d</sub>\*||≥2s is not justified: it looks arbitrary.

## Randomizing the Hybrid Attack


#### Randomization

- The hybrid attack is essentially deterministic: only the lattice reduction part brings randomness.
- We add randomization to improve the analysis and the success probability.
  - o Torus Locality-Sensitive-Hashing (LSH)
  - o Permuted HNF

## Odlyzko's Attack

- og=hf mod (q,XN-1) where f,g ternary
- o If f=f<sub>1</sub>-f<sub>2</sub> then g=hf<sub>1</sub>-hf<sub>2</sub> mod (q,XN-1) so hf<sub>1</sub> and hf<sub>2</sub> are close mod q: nearcollisions detected with a variableoutput-size function.
- Torus-LSH uses a random hash function
   H such that H(hf<sub>1</sub>)=H(hf<sub>2</sub>) with high
   probability.

## Halving a Torus



Integers mod q

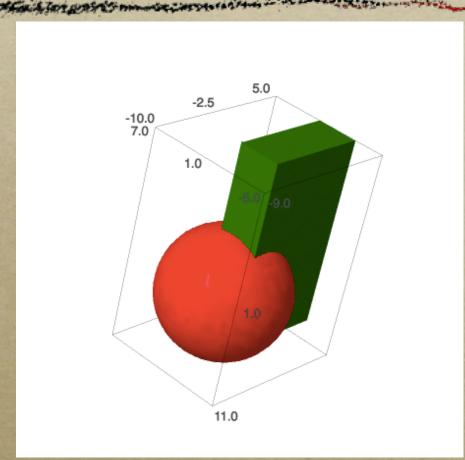
## The Hybrid Attack

- Replace the decomposition  $f=f_1-f_2$  by a partial decomposition  $f_1-f_2$  over the last k coordinates of f.
- Lattice reduction can combine it with Torus-LSH if a certain condition holds.

#### Permuted HNF

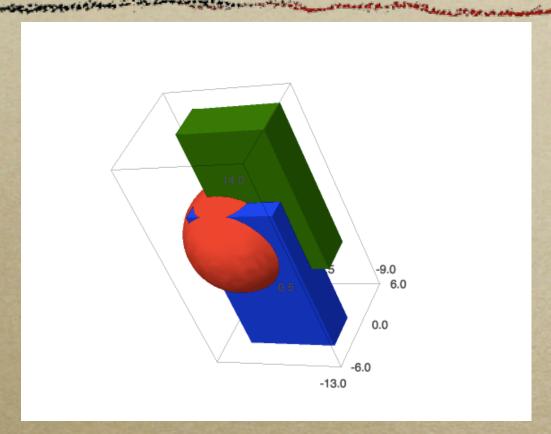
- Instead of the last k coordinates of f, target any k coordinates of (f,g): much more efficient if g is sparser than f, e.g. NTRU-HSS.
  - o Permute the coordinates
  - Extract the HNF
  - · Repermute the coordinates

Cleaning Up the Success
Probability


## Success Probability

- It depends on the so-called admissibility condition [HG07].
  - Only heuristic estimates proposed:
     assume independence of coordinates.
  - o Very limited experiments.
  - o Ignored by the NTRU submission.

### Geometric Insights


- Analyze the success probability of Babai's nearest plane algorithm to solve BDD with a spherical noise.
- o Generalization to admissibility.

## Sphere Fraction in a Box



- o box = GramSchmidt
  parallelepiped
  of the reduced
  basis
- osphere = noise
- The worst-case analysis is not tight:
   Most of the unit-sphere is inside a cube [-c,c]<sup>n</sup> for some c~2log(n)/√n

#### Random Sphere Fraction



 Success probability obtained by shifting the centered box by a random point in the box: significantly decreases the fraction.

#### Our results

- Fast rigorous bounds on the sphere/box fraction
- A polynomial-time approximation based on Fourier series, expanding [AN17]
- o Simpler and faster heuristic estimates

#### Conclusion

- o Faster and cleaner hybrid attack
  - Larger experiments, e.g. NTRU-107 with BKZ-20.
- NTRU's security estimates for the hybrid attack should be ignored: actual figures don't compete with the primal attack.