BUFFing signature schemes beyond unforgeability and the case of post-quantum signatures

Cas Cremers¹

Christian Janson²

¹CISPA, Germany cremers@cispa.de

²TU Darmstadt, Germany samed@qpc.tu-darmstadt.de, {rune.fiedler, marc.fischlin, christian.janson}@cryptoplexity.de

3rd NIST PQC Standardization Conference

Rune Fiedler (TU Darmstadt)

BUFFing Signatures and PQ

Are signatures exclusively owned by one public key?

$$\mathcal{P} \triangleq \mathcal{Q} \longleftarrow \mathcal{P} \triangleq \mathcal{Q}$$

- Possible unexpected behavior of unforgeable signature schemes:
 Given a signature, generate a new public key under which the signature verifies
- Property preventing this: Exclusive Ownership (S-DEO) [PS05, JCCS19, BCJZ21, CGN20]

Is a signature bound to a message?

- Possible unexpected behavior of unforgeable signature schemes:
 Compute a public key for which a signature can verify several messages
- Property preventing this: Message-Bound Signatures (MBS) [JCCS19, BCJZ21, CGN20]

Can you sign an unknown message?

$$\mathcal{P} \boxtimes \mathcal{Q} \longleftarrow \overline{\mathcal{Q}} \longleftarrow \mathcal{P} \boxtimes \mathcal{Q}$$

- Possible unexpected behavior of unforgeable signature schemes:
 Given a signature but not its message, produce a new public key under which the same message verifies
- Property preventing this: Non re-signability (NR) [JCCS19]

Unforgeability does not protect from malicious public keys

Unforgeability does not protect from malicious public keys

Rune Fiedler (TU Darmstadt)

Unforgeability does not protect from malicious public keys

Attacking real-world protocols with malicious public keys I

Attack on Let's Encrypt ACME Draft 00 Protocol by [JCCS19]

Rune Fiedler (TU Darmstadt)

Attacking real-world protocols with malicious public keys II

Beyond UnForgeability Features (BUFF)

Schemes that offer S-CEO/S-DEO, MBS, and NR provide BUFF:

Beyond UnForgeability Features

and don't have the unexpected behaviors of stealing signatures, signing unknown messages, or ambiguous signatures.

Several NIST finalists lack BUFF

	Scheme	S-CEO & S-DEO	MBS	NF
main	CRYSTALS-Dilithium	1	1	1
	FALCON	×	1	X
	Rainbow Standard	×	1	X
	Rainbow CZ & Compr.	+	1	×
alternate	GeMSS	×	×	×
	Picnic	1	1	1
	SPHINCS ⁺	*	1	+

Our generic BUFF transformation

- Schemes can be transformed to meet BUFF by adding scheme-specific checks
- or by applying our generic BUFF transformation:
 - Compute H(pk, m). Sign digest. Prepend digest to the signature. $\begin{array}{c}
 h \leftarrow H(pk, m) \\
 \sigma \leftarrow Sign(sk, h) \\
 return (h, \sigma)
 \end{array}$
 - Verification additionally checks the digest

Our generic BUFF transformation achieves BUFF

$$h \leftarrow \mathsf{H}(\mathsf{pk}, m)$$

 $\sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, h)$
return (h, σ)

$$egin{aligned} h &= \mathsf{H}(\mathsf{pk}, m) \ \wedge \, \mathsf{Vf}(\mathsf{pk}, h, \sigma) \end{aligned}$$

- ► Hashing in Sign binds to (pk, m)
- Checking digest in Vf prevents weak keys (where Vf always returns true)
- Formally, security reduces to security properties of H

Our generic BUFF transformation is efficient

$$h \leftarrow H(pk, m)$$

 $\sigma \leftarrow Sign(sk, h)$
return (h, σ)

$$egin{aligned} h &= \mathsf{H}(\mathsf{pk},m) \ \wedge \, \mathsf{Vf}(\mathsf{pk},h,\sigma) \end{aligned}$$

- One hash function evaluation in Sign and Vf each
- Signature size increases by the size of one hash digest

BUFF transformation keeps relative signature sizes

The impact of provably guaranteeing NR, S-CEO/S-DEO, and MBS on signature size

BUFF finalists now, prevent headaches later!

- Protect upcoming standard against maliciously generated public keys!
- Scheme-specific proofs or apply generic BUFF transformation
- Situation similar to length-extension resilience of SHA3
- ▶ NIST chooses Dilithium or FALCON (and SPHINCS+), all three will have BUFF!

Full paper: https://eprint.iacr.org/2020/1525 (and IEEE S&P 2021) rune.fiedler@cryptoplexity.de

Rune Fiedler (TU Darmstadt)

References I

[Aye15] Andrew Ayer. Duplicate Signature Key Selection Attack in Let's Encrypt, 2015. https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt.

[BCJZ21] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security of Ed25519: Theory and practice. In IEEE S&P (to appear), 2021. https://eprint.iacr.org/2020/823.

[BWM99] Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the station-to-station (STS) protocol. In PKC, 1999. https://link.springer.com/chapter/10.1007/978-3-642-19074-2_18.

[CGN20] Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. Taming the Many EdDSAs. In SSR, 2020. https://eprint.iacr.org/2020/1244.

References II

[JCCS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit: Automated analysis of subtle attacks on protocols that use signatures. In ACM CCS, 2019. https://eprint.iacr.org/2019/779.

[PS05] Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive ownership. In ACNS, 2005. https://link.springer.com/chapter/10.1007/11496137_10.

- secret key icon by Yannick Lung
- public key icon by Yannick Lung
- "Let's Encrypt Wide" by Let's Encrypt is licensed under CC BY-NC 4.0
- DNS icon made by Eucalyp from Flaticon
- puzzle icon by Becris.
- Signature icon by PINPOINT.WORLD is licensed under CC BY 3.0
- Message icon by Yannick Lung

Fiat-Shamir Transform implements BUFF transform

▶ Fiat-Shamir transform implements BUFF transform

Dilithium and Picnic provide BUFF

FALCON

$$Vf_{FALCON}(pk = h, m, \sigma = (r, s_2))$$

$$c \leftarrow H(r, m)$$

$$s_1 \leftarrow c - s_2 h$$

$$d \leftarrow \|(s_1, s_2)\|^2 \le \lfloor \beta^2 \rfloor$$

 \blacktriangleright leverage (non-)invertibility of s_2 to break exclusive ownership and NR

Rainbow (& GeMSS)

$$Vf_{Rainbow}(pk = \mathcal{P}, m, \sigma = (z, r))$$

$$h \leftarrow H(H(m), r)$$

$$d \leftarrow \mathcal{P}(z) = h$$

$$\downarrow$$

$$d$$

- \blacktriangleright Construct tailored public map ${\cal P}$ for fixed digest to break exclusive ownership
- Re-sign digest under own key to break NR
- \blacktriangleright GeMSS has additional input to $\mathcal P$ that allows wiggle room to break MBS

SPHINCS+

 $\begin{array}{l} \mathsf{Vf}_{SPHINCS+}(\mathsf{pk} = (seed, root), m, \sigma = (r, \sigma_{HT})) \\ \hline \\ digest \leftarrow \mathsf{H}_{msg}(r, \mathsf{pk}.seed, \mathsf{pk}.root, m) \\ root' \leftarrow \mathsf{hash} \text{ to the root}(digest, \mathsf{pk}.seed, \sigma_{HT}) \\ d \leftarrow root' = \mathsf{pk}.root \\ \hline \\ \\ \downarrow \\ d \end{array}$

Breaking exclusive ownership requires finding pk'.root = H(...H_{msg}(pk'.root, ...))

▶ If signature leaks *digest*, NR reduces to Φ NM of H_{msg}, otherwise attacker can only guess

Comparison of transformations

Transform	. Signature	S-CEO	S-DEO	M-S-UEO	MBS	NR
[PS05]-1	Sig(sk, m), H(m)	X	1	X	 Image: A second s	X
[PS05]-2	Sig(sk, m), H(pk)	\checkmark	\checkmark	1	×	X
[PS05]-3	Sig(sk, H(m, pk))	🗡 (🗸)	🗡 (🗸)	×	×	X
BUFF	Sig(sk, H(m, pk)), H(m, pk)			\checkmark	\checkmark	<

✓ provides property X vulnerable (✓) provides property if no weak keys