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Conservative code-based encryption

“This is going to be the most boring submission of them all”.
(T. Lange, April 2018)

This is still the case.

Nothing has changed in more than 40 years in the asymptotics
of OW-Passive security for McEliece.

We follow best practices to obtain an IND-CCA KEM.

For Round 2, we added more parameter sets, as requested.
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One-wayness (OW-Passive)

Fundamental security question (SDP):
Given random parity-check matrix H and syndrome s,
can attacker efficiently find e with s = He?

I Write H = (In−k |T ), public key is (n − k)× k matrix T ,
n − k = t log2 q. H constructed from binary Goppa code.

I Encapsulate using e of weight t.

I Decapsulate using Goppa decoding algorithm.

Classic McEliece only uses Niederreiter’s “dual” framework, and
some decoding speedups. This improves efficiency while clearly
preserving security.
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Parameter sets

n t public key secret key ciphertext

8,192 128 1,357,824 bytes 14,080 bytes 240 bytes
Both n and t powers of 2. Same as Round 1.

6,960 119 1,047,319 bytes 13,908 bytes 226 bytes
Max security with pkbytes ≤ 220. Same as Round 1.

6,688 128 1,044,992 bytes 13,892 bytes 240 bytes
Max security with pkbytes ≤ 220 if n and t are multiples of 32.

4,608 96 524,160 bytes 13,568 bytes 188 bytes
Max security with pkbytes ≤ 219 if n and t are multiples of 32.

3,488 64 261,120 bytes 6,452 bytes 128 bytes
Max security with pkbytes ≤ 218 if n and t are multiples of 32.
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Ciphertext size

Classic McEliece has very short ciphertexts.

We could save another 32 bytes of ciphertext by removing
plaintext confirmation in the IND-CCA transform.
However, plaintext confirmation has security advantages.

Even including these 32 bytes,
Classic McEliece has the smallest ciphertexts in the competition.

High degree of flexibility in choice of parameters.
Could increase key size to obtain even smaller ciphertexts.
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Optimized implementations

We provided four implementations for each parameter set, all
constant-time: ref, vec, sse, avx.

Times improved: e.g. for mceliece8192128 (Haswell cycles)

I 4,000,000,000 → 811,681,256 for keygen

I 300,000 → 194,500 for encaps

I 450,000 → 322,236 for decaps

Very fast in hardware (Artix-7/Virtex-7).

For mceliece8192128 (time-optimized)

I 1,286,179 for keygen

I 6,528 for encaps

I 26,237 for decaps

(cycles at 28.4MHz on Virtex-7 XC7V2000T FPGA).
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Key-generation speed

Classic McEliece uses keys in systematic form.
We choose to abort if left r × r submatrix has not full rank.
This works about 29% of the time.

NTS-KEM uses permuted systematic form.
This works about 100% of the time, but pivoting
makes constant-time Gaussian elimination much slower.

We introduced and analyzed (µ, ν)-semi-systematic form to

I achieve KeyGen success probability about 1− 2µ−ν ,

I obtain a fast constant-time implementation of Gaussian
elimination with pivoting limited by (µ, ν).

We have implemented 5 additional parameter sets with
(µ, ν) = (32, 64) as possible future proposals.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


Key-generation speed

Classic McEliece uses keys in systematic form.
We choose to abort if left r × r submatrix has not full rank.
This works about 29% of the time.

NTS-KEM uses permuted systematic form.
This works about 100% of the time, but pivoting
makes constant-time Gaussian elimination much slower.

We introduced and analyzed (µ, ν)-semi-systematic form to

I achieve KeyGen success probability about 1− 2µ−ν ,

I obtain a fast constant-time implementation of Gaussian
elimination with pivoting limited by (µ, ν).

We have implemented 5 additional parameter sets with
(µ, ν) = (32, 64) as possible future proposals.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


Key-generation speed

Classic McEliece uses keys in systematic form.
We choose to abort if left r × r submatrix has not full rank.
This works about 29% of the time.

NTS-KEM uses permuted systematic form.
This works about 100% of the time, but pivoting
makes constant-time Gaussian elimination much slower.

We introduced and analyzed (µ, ν)-semi-systematic form to

I achieve KeyGen success probability about 1− 2µ−ν ,

I obtain a fast constant-time implementation of Gaussian
elimination with pivoting limited by (µ, ν).

We have implemented 5 additional parameter sets with
(µ, ν) = (32, 64) as possible future proposals.

Classic McEliece https://classic.mceliece.org/ 7

https://classic.mceliece.org/


Large keys in practice

IND-CCA means we can generate key once and use it many times.

Key generation is well under a second even with largest parameters.

Even more efficient in hardware.

Public keys can use efficient broadcast networks
and do not add much to modern Internet traffic.

Bernstein-Lange “McTiny” fits McEliece into tiny network servers,
even with forward secrecy.
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NIST submission Classic McEliece

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Short ciphertexts.

I Efficient and straightforward conversion
OW-CPA PKE → IND-CCA KEM.

I Open-source (public domain) implementations.
I Constant-time software implementations.
I FPGA implementation of full cryptosystem.

I No patents.

See https://classic.mceliece.org for more details.
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