## Cryptanalysis of Internal Keyed Permutation of FLEXAEAD

#### Mostafizar Rahman<sup>1</sup>, Dhiman Saha<sup>2</sup>, Goutam Paul<sup>1</sup> **Presented By- Avik Chakraborti**<sup>3</sup>

<sup>1</sup>Indian Statistical Institute, Kolkata <sup>2</sup>Indian Institute of Technology, Bhilai <sup>3</sup>NTT Secure Platform Laboratories, Tokyo





・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Lightweight Cryptography Workshop 2019

► FLEXAEAD is round 1 candidate of NIST LWC

► The underlying Blockcipher is Internal Keyed Permutation

- Block Size can be 64-bit, 128-bit or 256-bit
- Reported Key Recovery Attack for each variant
- The attacks are of two type
  - 1. Iterated Truncated Differential
  - 2. Yoyo Attacks

## Internal Keyed Permutation of FLEXAEAD



- 1. x-bit Flex state is called FLEX-x
- $2. \ \mathrm{FLEX}\text{-}128 \ round \ function$
- 3. State Bifurcation
- 4. AES Sbox is used
- 5. Repeated several times



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Effect of BlockShuffle



 Same Nibble in "Symmetric Bytes" transits to a single byte

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

 Number of active bytes can be decreased from two to one

#### Effect of SBoxes



- Due to the effect of XOR, one active byte activates two bytes
- A pair of "Symmetric Byte" activates a pair of "Symmetric Byte"

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

## **Key Observations**

#### Effect of SBoxes: Byte to Nibble Transition



- Only upper or lower nibbles of "Symmetric Bytes" are activated
- If initially a pair of "Symmetric Bytes" are active, this event occurs with equal probability

・ロット (雪) ( キョット (日) ) ヨー

Sac

#### Exploiting AES Sbox

 $\begin{vmatrix} \{(x_1, x_2) | (S(x_1) \oplus S(x_2)) & \& \text{ OxfO } = 0, \forall x_1, x_2 \in \mathbb{F}_{2^8} \\ \{(x_1, x_2) | (S(x_1) \oplus S(x_2)) & \& \text{ OxOf } = 0, \forall x_1, x_2 \in \mathbb{F}_{2^8} \end{vmatrix} = 4096$ 

# With probability $2^{-7}$ two bytes transits to either upper or lower nibble



#### SuperSBox

- ► Two Super-Sbox exists in FLEX-128
- Initial BlockShuffle Layer is not considered in the Super-Sbox
- Super-Sbox spans over 2.5 round
- Each Super-Sbox is of 64-bit
- Super-Sbox in FLEX-64 and FLEX-256 spans over 1.5 and 3.5 round respectively

## Iterated Truncated Differential

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- Effect of BlockShuffle and Byte to Nibble Transition is Combined
- The active nibbles in initial state and final state are in same position at the cost of 2<sup>-7</sup>



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Iterated Truncated Differential



- The truncated differential can be iterated for r rounds
- Paying probability for r rounds
- Cost of the trail is 2<sup>-7\*r</sup>
- Some rounds at the end can be made free

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Iterated Truncated Differential: Free Rounds=1



- 2 bytes are fully active
- Paying probability for r 1 rounds

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

#### Iterated Truncated Differential: Free Rounds=2



▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

#### Iterated Truncated Differential: Distinguisher



- Number of free rounds is 3
- Probability of 6-round FLEX-128 distinguisher is 2<sup>-7\*3</sup>
- In similar way, number of free rounds in 5-round FLEX-64 and 7-round FLEX-256 is 2 and 4 respectively

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Iterated Truncated Differential: Key Recovery



- Find a right pair (P<sub>1</sub>, P<sub>2</sub>), such that difference is in byte 0 and 8
- Guess Key byte 0 and 8 (2<sup>16</sup> possible guesses)
- Run one round encryption and check whether same of byte 0 and 8 are active or not in Y<sub>1</sub> (2<sup>9</sup> key candidates remain)
- Use two more right pairs to reduce key candidates to 1
- Repeat the procedure for 8 more byte pairs

## Iterated Truncated Differential Attacks: Summary

| Block<br>Size | #rounds | Data<br>Complexity |      | Time<br>Complexity | Memory<br>Complexity |
|---------------|---------|--------------------|------|--------------------|----------------------|
|               |         | Encs               | Decs | MAs                | Complexity           |
| 64            | 7       | 2 <sup>30.5</sup>  |      | 2 <sup>34.5</sup>  | 2 <sup>18.5</sup>    |
| 128           | 16      | 2 <sup>93.5</sup>  |      | 2 <sup>108.5</sup> | 2 <sup>20.5</sup>    |
| 256           | 21      | 2 <sup>109.5</sup> |      | 2 <sup>125.5</sup> | 2 <sup>22.5</sup>    |

## Yoyo Attacks



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

### The Yoyo Trick

Rønjom et al. Asiacrypt 2017 Deterministic Distinguisher for 2 generic SP Rounds

$$G'_{2} = L \circ S \circ L \circ S$$

$$G_{2} = S \circ L \circ S \qquad \leftarrow \text{Dropping final linear layer (to simplify)}$$



 ν is the Zero Difference Pattern

#### Applied to AES

 First key-independent Yoyo distinguishers of AES

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Sac

► 5-round Key Recovery

## The Yoyo Trick

#### Zero Difference Pattern

P<sub>1</sub> \* P<sub>2</sub>

 $\nu(P_1 \oplus P_2) = \{0,1\}$ 

- Two Super-Sbox in FLEX-128 state
- A fully inactive Super-Sbox is denoted by 1; otherwise, 0



## Yoyo Attacks: Deterministic Distinguisher





- Super-Sbox and BlockShuffle are considered as S and L layer respectively
- FLEX-128 Super-Sbox spans over 2.5 rounds
- 6-round FLEX-128 Deterministic Distinguisher
- Apply Yoyo game

1. 
$$P_1, P_2 \xrightarrow{ENC} C_1, C_2$$
  
2.  $C_1, C_2 \xrightarrow{MSwap} C'_1, C'_2$ 

B. 
$$C'_1, C'_2 \xrightarrow{DEC} P'_1, P'_2$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 6-round Deterministic Distinguisher is the building block of 7-round FLEX-128 Key Recovery attack
- Byte to Nibble Transition is used to extend for 1 round
- ▶ Similar kinds of attacks exist for FLEX-64 and FLEX-256

## Yoyo Attacks: Key Recovery



- Choose  $P_1, P_2$  and encrypt them to obtain  $C_1, C_2$
- Apply *MSwap* on  $C_1, C_2$  and decrypt them to get  $P'_1, P'_2$
- Any one of the 8 active Bytes in W<sub>2</sub> can be zero w.p. 2<sup>-5</sup>
- ► Trail probability is 2<sup>-12</sup>
- Key Recovery part is same as Iterated Truncated Differential

| Block<br>Size | #rounds | Data<br>Complexity |                   | Time<br>Complexity | Memory<br>Complexity |
|---------------|---------|--------------------|-------------------|--------------------|----------------------|
|               |         | Encs               | Decs              | MAs                | Complexity           |
| 64            | 5       | 2 <sup>10</sup>    | 2 <sup>16.5</sup> | 2 <sup>15.5</sup>  | 2 <sup>10</sup>      |
| 128           | 7       | 2 <sup>10.5</sup>  | 2 <sup>16.5</sup> | 2 <sup>16.5</sup>  | 2 <sup>11.5</sup>    |
| 256           | 9       | 2 <sup>11</sup>    | 2 <sup>16.5</sup> | 2 <sup>17.5</sup>  | 2 <sup>13</sup>      |

| Block<br>Size | #rounds | Data               |       | Time               | Memory<br>Complexity | Attack             |
|---------------|---------|--------------------|-------|--------------------|----------------------|--------------------|
|               |         | Complexity         |       | Complexity         |                      | Tuno               |
|               |         | Encs               | Decs  | MAs                | Complexity           | туре               |
| 64            | 7       | 2 <sup>30.5</sup>  |       | 2 <sup>34.5</sup>  | 2 <sup>18.5</sup>    | Iterated Truncated |
|               |         |                    |       |                    |                      | Differential       |
|               | 5       | 210                | o16.5 | 215.5              | 210                  | Yoyo               |
|               | 5       | 2                  | 2     | 2                  | 2                    | Attack             |
| 128           | 16      | 2 <sup>93.5</sup>  |       | 2 <sup>108.5</sup> | 2 <sup>20.5</sup>    | Iterated Truncated |
|               |         |                    |       |                    |                      | Differential       |
|               | 7       | 210.5              | 216.5 | 216.5              | 211.5                | Yoyo               |
|               | ,       | 2                  |       | 2                  | 2                    | Attack             |
| 256           | 21      | 2 <sup>109.5</sup> |       | 2 <sup>125.5</sup> | 2 <sup>22.5</sup>    | Iterated Truncated |
|               |         |                    |       |                    |                      | Differential       |
|               | 0       | 211                | 216.5 | 217.5              | 213                  | Yoyo               |
|               | 3       | 4                  | 2     | 2                  | 2                    | Attack             |

 Reported Iterated Truncated Differential which exploits AES Sbox and BlockShuffle operation

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- 2. Generalized Yoyo Distinguishing Attack is applicable
- 3. All attacks are exploited to recover subkeys
- 4. Practical ones are experimentally verified
- 5. FLEXAEAD is out of 2nd round

## Thank You

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>