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High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417
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Round 2 → Round 3

• No improved attacks

• We did some parameter reshuffling
• Chose parameters to fit with the NIST security levels  
• Added NIST Level 5 (was not mandatory, but became strongly recommended)

• Sampling in the signing procedure is now uniform within a range with 2k

elements – even simpler than before when the range wasn’t a power-of-2

• Slightly simpler and shorter generation of the fixed-weight challenge 
polynomial



Security Level Public Key  (Bytes) Signature (Bytes) pkgen sign verify

60 864 1196

100 992 1843

128 (NIST II)
1312 2420 50K cyc

60K / sec
150K cyc
20K / sec

65K cyc
45K / sec

2159 gates

298 memory

192 (NIST III)
1952 3293 80K cyc

35K / sec
200K cyc
15K / sec

95K cyc
30K / sec

2217 gates

2139 memory

256 (NIST V)
2592 4595 125K cyc

24K / cyc
230K cyc
13K / sec

135K cyc
22K / sec

2285 gates

2187 memory

320 2912 5246

384 3232 5892

AVX2 + AES on Skylake
# / sec is assuming 3GHz freq. CRYSTALS-Dilithium



Many Efficiency Trade-Offs Possible
Implementation of Dilithium Signing on Cortex M3 and M4: 
[Greconici, Kannwischer, Sprenkels 2020]   (Speed numbers extrapolated because the number of repetitions changed)

NIST Level 3 Speed RAM

Cortex M3 12M cycles 70KB

Cortex M3 37M cycles 11KB

Cortex M3 9M cycles 21KB

+ 48KB Flash

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash



Many Efficiency Trade-Offs Possible
Implementation of Dilithium Signing on Cortex M3 and M4: 
[Greconici, Kannwischer, Sprenkels 2020]   (Speed numbers extrapolated because the number of repetitions changed)

NIST Level 3 Speed RAM

Cortex M3 12M cycles 70KB

Cortex M3 37M cycles 11KB

Cortex M3 9M cycles 21KB

+ 48KB Flash

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

[Gonzalez, Hulsing, Kannwischer, Kramer, Lange, Stottinger, Waitz, Wiggers, Yang 2021]

Verification can fit in under 8kB of RAM
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CRYSTALS-Dilithium Falcon

+   ≈ 2.3 X smaller (pk + sig)

- Signing uses high-precision Gaussian sampling with       
high-precision changing centers.  Hard to 
detect subtle implementation mistakes 
which can leak the secret key

- Very difficult to mask

Signing a few messages ( ≈ 100?) shouldn’t leak 
enough even if the sampling is leaky

- ≈ 2.3 X larger (pk + sig)

+  Signing uses only uniform sampling in a 
(power-of-2) range.  Easier to detect bugs.

Comparison with Falcon
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Runtime Efficiency Comparison

NIST Level 3 Sign Speed Sign RAM

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

NIST Level 1 Sign Speed Sign RAM

Cortex M4 40M cycles 40KB

Cortex M4 21M cycles 25KB

+ 57KB Flash

Dilithium [Greconici, Kannwischer, 
Sprenkels 2020]

Falcon [Pornin, 2019]

NIST Level 3 Ver. Speed Ver. RAM

Cortex M4 2.7M cycles 11KB

NIST Level 1 Ver. Speed Ver. RAM

Cortex M4 0.5 M cycles 4KB

➢ 80% of Dilithium Verification Time is Keccak

NIST Level 3 Key Gen. Speed Key Gen. RAM

Cortex M4 6M cycles 10KB

NIST Level 1 Key Gen. Speed Key Gen. RAM

Cortex M4 171M cycles 16KB



Future Uses of Dilithium / Falcon 
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Falcon 
Signature



Future Uses of Dilithium / Falcon 
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Falcon 
Signature

Identity-Based 
Encryption



Future Uses of Dilithium / Falcon 
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set 
Membership

Confidential 
Transactions

Falcon 
Signature

Identity-Based 
Encryption



Future Uses of Dilithium / Falcon 
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set 
Membership

Confidential 
Transactions

Falcon 
Signature

Identity-Based 
Encryption

ZK proofs for 
general circuits



Future Uses of Dilithium / Falcon 
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set 
Membership

Confidential 
Transactions

Privacy-Based Crypto
(e.g. Group Signature)

Falcon 
Signature

Identity-Based 
Encryption

ZK proofs for 
general circuits
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Confidential 
Transactions

Privacy-Based Crypto
(e.g. Group Signature)

Falcon 
Signature

Identity-Based 
Encryption

ZK proofs for 
general circuits

Lattice-based ZK proofs improved by 3 orders of magnitude in the last 2 years
Lattices are currently the most efficient quantum-safe solution for many of these applications

We should probably get good at the techniques behind them
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• Maybe … but I think more discussion is needed. 
• They may both be useful as signatures even if they are both lattice schemes
• Both, or at least techniques from both, will be useful in the future

• Main question for now: are serious footguns a serious problem?
“Dilithium uses only uniform sampling, and is in general much easier to implement than Falcon; on 
the other hand, Falcon produces much shorter signatures“ [Pornin, 2019]

• A possible compromise is:
• Make Dilithium the default option
• Allow Falcon to be used in certain situations that only require k-time signatures (k ≈ 100 – 1000 is 

reasonable)
• NIST standardized 1-time signatures, why not k-time ones? 
• Could also consider the Falcon ideas with less compact, but easier to use and mask (still Gaussian, 

though) samplers that don’t require floating point ops in the “4th round” :
• MITAKA [Espitau, Takahashi, Tibouchi, Wallet 2020]
• Zalcon [Fouque, Gerard, Rossi, Yu 2021]



CRYSTALS – Dilithium

https://pq-crystals.org/dilithium/index.shtml

https://github.com/pq-crystals/dilithium

https://github.com/pq-crystals/security-estimates


