
CRYSTALS - Dilithium

Shi Bai

Leo Ducas

Eike Kiltz

Tancrede Lepoint

Vadim Lyubashevsky

Peter Schwabe

Gregor Seiler

Damien Stehle

High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417

KeyGen:
A  Rn x m

s  Sm

t = Round(As)
pk=(A,t) sk=s

High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417

Sign(pk,sk,μ):
y  Ym

w=Round(Ay)
c=Hash(w,μ)
z=sc+y
RejectionSample(pk,sk,z)
ω = HintVector(pk,sk,z)
σ = (z, ω, c)

KeyGen:
A  Rn x m

s  Sm

t = Round(As)
pk=(A,t) sk=s

High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417

Sign(pk,sk,μ):
y  Ym

w=Round(Ay)
c=Hash(w,μ)
z=sc+y
RejectionSample(pk,sk,z)
ω = HintVector(pk,sk,z)
σ = (z, ω, c)

KeyGen:
A  Rn x m

s  Sm

t = Round(As)
pk=(A,t) sk=s

The main difference between lattice and Schnorr schemes

High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417

Verify(μ,σ,pk):
w=UseHintVector(pk,σ)
check that c=Hash(w, μ) and |z| is small

Sign(pk,sk,μ):
y  Ym

w=Round(Ay)
c=Hash(w,μ)
z=sc+y
RejectionSample(pk,sk,z)
ω = HintVector(pk,sk,z)
σ = (z, ω, c)

KeyGen:
A  Rn x m

s  Sm

t = Round(As)
pk=(A,t) sk=s

The main difference between lattice and Schnorr schemes

High-Level Scheme Overview
• “Schnorr-like” lattice-based signature scheme

• Based on the hardness of Module-SIS and Module-LWE

• All operations over R=Zq[X]/(X256+1) for q=8,380,417

Round 2 → Round 3

Round 2 → Round 3

• No improved attacks

Round 2 → Round 3

• No improved attacks

• We did some parameter reshuffling
• Chose parameters to fit with the NIST security levels
• Added NIST Level 5 (was not mandatory, but became strongly recommended)

Round 2 → Round 3

• No improved attacks

• We did some parameter reshuffling
• Chose parameters to fit with the NIST security levels
• Added NIST Level 5 (was not mandatory, but became strongly recommended)

• Sampling in the signing procedure is now uniform within a range with 2k

elements – even simpler than before when the range wasn’t a power-of-2

• Slightly simpler and shorter generation of the fixed-weight challenge
polynomial

Security Level Public Key (Bytes) Signature (Bytes) pkgen sign verify

60 864 1196

100 992 1843

128 (NIST II)
1312 2420 50K cyc

60K / sec
150K cyc
20K / sec

65K cyc
45K / sec

2159 gates

298 memory

192 (NIST III)
1952 3293 80K cyc

35K / sec
200K cyc
15K / sec

95K cyc
30K / sec

2217 gates

2139 memory

256 (NIST V)
2592 4595 125K cyc

24K / cyc
230K cyc
13K / sec

135K cyc
22K / sec

2285 gates

2187 memory

320 2912 5246

384 3232 5892

AVX2 + AES on Skylake
/ sec is assuming 3GHz freq. CRYSTALS-Dilithium

Many Efficiency Trade-Offs Possible
Implementation of Dilithium Signing on Cortex M3 and M4:
[Greconici, Kannwischer, Sprenkels 2020] (Speed numbers extrapolated because the number of repetitions changed)

NIST Level 3 Speed RAM

Cortex M3 12M cycles 70KB

Cortex M3 37M cycles 11KB

Cortex M3 9M cycles 21KB

+ 48KB Flash

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

Many Efficiency Trade-Offs Possible
Implementation of Dilithium Signing on Cortex M3 and M4:
[Greconici, Kannwischer, Sprenkels 2020] (Speed numbers extrapolated because the number of repetitions changed)

NIST Level 3 Speed RAM

Cortex M3 12M cycles 70KB

Cortex M3 37M cycles 11KB

Cortex M3 9M cycles 21KB

+ 48KB Flash

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

[Gonzalez, Hulsing, Kannwischer, Kramer, Lange, Stottinger, Waitz, Wiggers, Yang 2021]

Verification can fit in under 8kB of RAM

Design Criteria for CRYSTALS-Dilithium

1. Significant speed / size advantage over hash-based schemes, even when
comparing 256-bit Dilithium vs. 128-bit SHA-based schemes

Design Criteria for CRYSTALS-Dilithium

1. Significant speed / size advantage over hash-based schemes, even when
comparing 256-bit Dilithium vs. 128-bit SHA-based schemes

SPHINCS+ Small (NIST Level 1) SPHINCS+ Fast (NIST Level 1)

Dilithium (NIST Level 5) 3000X faster signing / same size 150X faster signing / 2.5X smaller

Design Criteria for CRYSTALS-Dilithium

1. Significant speed / size advantage over hash-based schemes, even when
comparing 256-bit Dilithium vs. 128-bit SHA-based schemes

2. Easy to implement
• no Gaussian sampling (not even the “easy kind” always centered at 0)
• should be easy to avoid detect bugs

SPHINCS+ Small (NIST Level 1) SPHINCS+ Fast (NIST Level 1)

Dilithium (NIST Level 5) 3000X faster signing / same size 150X faster signing / 2.5X smaller

Design Criteria for CRYSTALS-Dilithium

1. Significant speed / size advantage over hash-based schemes, even when
comparing 256-bit Dilithium vs. 128-bit SHA-based schemes

2. Easy to implement
• no Gaussian sampling (not even the “easy kind” always centered at 0)
• should be easy to avoid detect bugs

Dilithium > Dilithium-G > BLISS

Gaussians Gaussians + NTRU
assumption

SPHINCS+ Small (NIST Level 1) SPHINCS+ Fast (NIST Level 1)

Dilithium (NIST Level 5) 3000X faster signing / same size 150X faster signing / 2.5X smaller

Design Criteria for CRYSTALS-Dilithium

1. Significant speed / size advantage over hash-based schemes, even when
comparing 256-bit Dilithium vs. 128-bit SHA-based schemes

2. Easy to implement
• no Gaussian sampling (not even the “easy kind” always centered at 0)
• should be easy to avoid detect bugs

Dilithium > Dilithium-G > BLISS > Falcon

Gaussians Gaussians + NTRU
assumption

SPHINCS+ Small (NIST Level 1) SPHINCS+ Fast (NIST Level 1)

Dilithium (NIST Level 5) 3000X faster signing / same size 150X faster signing / 2.5X smaller

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 1312 2420

192 1952 3293

256 2592 4595

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 897 666

- - -

256 1793 1280

CRYSTALS-Dilithium Falcon

Comparison with Falcon

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 1312 2420

192 1952 3293

256 2592 4595

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 897 666

- - -

256 1793 1280

CRYSTALS-Dilithium Falcon

+ ≈ 2.3 X smaller (pk + sig)- ≈ 2.3 X larger (pk + sig)

Comparison with Falcon

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 1312 2420

192 1952 3293

256 2592 4595

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 897 666

- - -

256 1793 1280

CRYSTALS-Dilithium Falcon

+ ≈ 2.3 X smaller (pk + sig)

- Signing uses high-precision Gaussian sampling with
high-precision changing centers. Hard to
detect subtle implementation mistakes
which can leak the secret key

- Very difficult to mask

- ≈ 2.3 X larger (pk + sig)

+ Signing uses only uniform sampling in a
(power-of-2) range. Easier to detect bugs.

Comparison with Falcon

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 1312 2420

192 1952 3293

256 2592 4595

Security Level Public Key
(Bytes)

Signature
(Bytes)

128 897 666

- - -

256 1793 1280

CRYSTALS-Dilithium Falcon

+ ≈ 2.3 X smaller (pk + sig)

- Signing uses high-precision Gaussian sampling with
high-precision changing centers. Hard to
detect subtle implementation mistakes
which can leak the secret key

- Very difficult to mask

Signing a few messages (≈ 100?) shouldn’t leak
enough even if the sampling is leaky

- ≈ 2.3 X larger (pk + sig)

+ Signing uses only uniform sampling in a
(power-of-2) range. Easier to detect bugs.

Comparison with Falcon

Runtime Efficiency Comparison

Dilithium [Greconici, Kannwischer,
Sprenkels 2020]

Falcon [Pornin, 2019]

Runtime Efficiency Comparison

Dilithium [Greconici, Kannwischer,
Sprenkels 2020]

Falcon [Pornin, 2019]

NIST Level 3 Key Gen. Speed Key Gen. RAM

Cortex M4 6M cycles 10KB

NIST Level 1 Key Gen. Speed Key Gen. RAM

Cortex M4 171M cycles 16KB

Runtime Efficiency Comparison

NIST Level 3 Sign Speed Sign RAM

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

NIST Level 1 Sign Speed Sign RAM

Cortex M4 40M cycles 40KB

Cortex M4 21M cycles 25KB

+ 57KB Flash

Dilithium [Greconici, Kannwischer,
Sprenkels 2020]

Falcon [Pornin, 2019]

NIST Level 3 Key Gen. Speed Key Gen. RAM

Cortex M4 6M cycles 10KB

NIST Level 1 Key Gen. Speed Key Gen. RAM

Cortex M4 171M cycles 16KB

Runtime Efficiency Comparison

NIST Level 3 Sign Speed Sign RAM

Cortex M4 8M cycles 70KB

Cortex M4 26M cycles 11KB

Cortex M4 6M cycles 21KB

+ 48KB Flash

NIST Level 1 Sign Speed Sign RAM

Cortex M4 40M cycles 40KB

Cortex M4 21M cycles 25KB

+ 57KB Flash

Dilithium [Greconici, Kannwischer,
Sprenkels 2020]

Falcon [Pornin, 2019]

NIST Level 3 Ver. Speed Ver. RAM

Cortex M4 2.7M cycles 11KB

NIST Level 1 Ver. Speed Ver. RAM

Cortex M4 0.5 M cycles 4KB

➢ 80% of Dilithium Verification Time is Keccak

NIST Level 3 Key Gen. Speed Key Gen. RAM

Cortex M4 6M cycles 10KB

NIST Level 1 Key Gen. Speed Key Gen. RAM

Cortex M4 171M cycles 16KB

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Falcon
Signature

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Falcon
Signature

Identity-Based
Encryption

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set
Membership

Confidential
Transactions

Falcon
Signature

Identity-Based
Encryption

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set
Membership

Confidential
Transactions

Falcon
Signature

Identity-Based
Encryption

ZK proofs for
general circuits

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set
Membership

Confidential
Transactions

Privacy-Based Crypto
(e.g. Group Signature)

Falcon
Signature

Identity-Based
Encryption

ZK proofs for
general circuits

Future Uses of Dilithium / Falcon
Techniques

Zero-Knowledge Proofs Trapdoor Sampling

Dilithium
Signature

Set
Membership

Confidential
Transactions

Privacy-Based Crypto
(e.g. Group Signature)

Falcon
Signature

Identity-Based
Encryption

ZK proofs for
general circuits

Lattice-based ZK proofs improved by 3 orders of magnitude in the last 2 years
Lattices are currently the most efficient quantum-safe solution for many of these applications

We should probably get good at the techniques behind them

Only Standardize Dilithium xor Falcon?
(as NIST suggested)

Only Standardize Dilithium xor Falcon?
(as NIST suggested)

• Maybe … but I think more discussion is needed.
• They may both be useful as signatures even if they are both lattice schemes
• Both, or at least techniques from both, will be useful in the future

Only Standardize Dilithium xor Falcon?
(as NIST suggested)

• Maybe … but I think more discussion is needed.
• They may both be useful as signatures even if they are both lattice schemes
• Both, or at least techniques from both, will be useful in the future

• Main question for now: are serious footguns a serious problem?
“Dilithium uses only uniform sampling, and is in general much easier to implement than Falcon; on
the other hand, Falcon produces much shorter signatures“ [Pornin, 2019]

Only Standardize Dilithium xor Falcon?
(as NIST suggested)

• Maybe … but I think more discussion is needed.
• They may both be useful as signatures even if they are both lattice schemes
• Both, or at least techniques from both, will be useful in the future

• Main question for now: are serious footguns a serious problem?
“Dilithium uses only uniform sampling, and is in general much easier to implement than Falcon; on
the other hand, Falcon produces much shorter signatures“ [Pornin, 2019]

• A possible compromise is:
• Make Dilithium the default option
• Allow Falcon to be used in certain situations that only require k-time signatures (k ≈ 100 – 1000 is

reasonable)
• NIST standardized 1-time signatures, why not k-time ones?

Only Standardize Dilithium xor Falcon?
(as NIST suggested)

• Maybe … but I think more discussion is needed.
• They may both be useful as signatures even if they are both lattice schemes
• Both, or at least techniques from both, will be useful in the future

• Main question for now: are serious footguns a serious problem?
“Dilithium uses only uniform sampling, and is in general much easier to implement than Falcon; on
the other hand, Falcon produces much shorter signatures“ [Pornin, 2019]

• A possible compromise is:
• Make Dilithium the default option
• Allow Falcon to be used in certain situations that only require k-time signatures (k ≈ 100 – 1000 is

reasonable)
• NIST standardized 1-time signatures, why not k-time ones?
• Could also consider the Falcon ideas with less compact, but easier to use and mask (still Gaussian,

though) samplers that don’t require floating point ops in the “4th round” :
• MITAKA [Espitau, Takahashi, Tibouchi, Wallet 2020]
• Zalcon [Fouque, Gerard, Rossi, Yu 2021]

CRYSTALS – Dilithium

https://pq-crystals.org/dilithium/index.shtml

https://github.com/pq-crystals/dilithium

https://github.com/pq-crystals/security-estimates

