

CRYSTALS-Kyber

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, **Peter Schwabe**, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org

https://pq-crystals.org/kyber

August 23, 2019

Reminder: the big picture

 $m = Dec(v - \mathbf{s}^T \mathbf{u})$

Kyber.CPAPKE: LPR encryption or "Noisy ElGamal"

$$\mathbf{s}, \mathbf{e} \leftarrow \chi$$

 $\mathbf{s}k = \mathbf{s}, pk = \mathbf{t} = \mathbf{A}\mathbf{s} + \mathbf{e}$
 $\mathbf{r}, \mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi$
 $\mathbf{u} \leftarrow \mathbf{A}^T \mathbf{r} + \mathbf{e}_1$
 $\mathbf{v} \leftarrow \mathbf{t}^T \mathbf{r} + \mathbf{e}_2 + \mathsf{Enc}(m)$
 $\mathbf{c} = (\mathbf{u}, \mathbf{v})$

1

Reminder: the big picture

Kyber.CPAPKE: LPR encryption or "Noisy ElGamal"

$$\mathbf{s}, \mathbf{e} \leftarrow \chi$$

$$\mathbf{s}k = \mathbf{s}, pk = \mathbf{t} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$\mathbf{r}, \mathbf{e}_1, e_2 \leftarrow \chi$$

$$\mathbf{u} \leftarrow \mathbf{A}^T \mathbf{r} + \mathbf{e}_1$$

$$\mathbf{v} \leftarrow \mathbf{t}^T \mathbf{r} + e_2 + \mathsf{Enc}(m)$$

$$\mathbf{r} = \mathsf{Dec}(\mathbf{v} - \mathbf{s}^T \mathbf{u})$$

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

- Use implicit rejection
- Hash public key into seed and shared key
- Hash ciphertext into shared key
- Use Keccak-based functions for all hashes and XOF

• Use MLWE instead of LWE or RLWE

- Use MLWE instead of LWE or RLWE
- ullet Use $\mathcal{R}=\mathbb{Z}_q[X]/(X^{256}+1)$ with q=7681

- Use MLWE instead of LWE or RLWE
- ullet Use $\mathcal{R}=\mathbb{Z}_q[X]/(X^{256}+1)$ with q=7681
- Use centered binomial noise

- Use MLWE instead of LWE or RLWE
- ullet Use $\mathcal{R}=\mathbb{Z}_q[X]/(X^{256}+1)$ with q=7681
- Use centered binomial noise
- Generate **A** via $XOF(\rho)$ ("NewHope style")

- Use MLWE instead of LWE or RLWE
- ullet Use $\mathcal{R}=\mathbb{Z}_q[X]/(X^{256}+1)$ with q=7681
- Use centered binomial noise
- Generate A via XOF(ρ) ("NewHope style")
- Compress ciphertexts (round off least-significant bits)

- Use MLWE instead of LWE or RLWE
- ullet Use $\mathcal{R}=\mathbb{Z}_q[X]/(X^{256}+1)$ with q=7681
- Use centered binomial noise
- Generate **A** via XOF(ρ) ("NewHope style")
- Compress ciphertexts (round off least-significant bits)
- Compress public keys

NIST comments

"We note that a potential issue is that the security proof does not directly apply to Kyber itself, but rather to a modified version of the scheme which does not compress the public key."

—NIST IR 8240

- 1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases

- 1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
- 2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
- 3. Update ciphertext-compression parameters

Kyber sizes, round 1 vs. round 2

Kyber512 ($k = 2$, level 1)			
round 1, sizes in bytes	round 2, sizes in bytes		
pk:	736	pk:	800
ct:	800	ct:	736
Kyber768 ($k = 3$, level 3)			
round 1, sizes in bytes round 2, sizes in byt			es in bytes
pk:	1088	pk:	1184
ct:	1152	ct:	1088
Kyber1024 ($k = 4$, level 5)			
round 1, sizes in bytes round 2, sizes in bytes			es in bytes
pk:	1440	pk:	1568
ct:	1504	ct:	1568

- 1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
- 2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
- 3. Update ciphertext-compression parameters
- 4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication

- 1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
- 2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
- 3. Update ciphertext-compression parameters
- 4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication
- 5. Reduce noise parameter to $\eta = 2$
 - Faster noise sampling

- 1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
- 2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
- 3. Update ciphertext-compression parameters
- 4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication
- 5. Reduce noise parameter to $\eta=2$
 - Faster noise sampling
- 6. Represent public key in NTT domain
 - Save several NTT computations

Kyber is fast

Kyber512 ($k = 2$, level 1)					
Sizes (in Bytes)		Haswell Cycles (AVX2)			
sk:	1632	gen:	29100		
pk:	800	enc:	46196		
ct:	736	dec:	39410		
Kyber768 ($k = 3$, level 3)					
Sizes (in Bytes)		Haswell Cycles (AVX2)			
sk:	2400	gen:	57340		
pk:	1184	enc:	78692		
ct:	1088	dec:	68620		
Kyber1024 ($k = 4$, level 5)					
Sizes (in Bytes)		Haswell Cycles (AVX2)			
sk:	3168	gen:	81244		
pk:	1568	enc:	109584		
ct:	1568	dec:	97280		
		-			

Kyber is fast and small

Kyber512 ($k = 2$, level 1)					
Stack usage (in Bytes)	Cortex-M4 Cycles				
gen:	2952	gen:	513992		
enc:	2552	enc:	652470		
dec:	2560	dec:	620946		
Kyber768 ($k = 3$, level 3)					
Stack usage (in Bytes)		Cortex-	Cortex-M4 Cycles		
gen:	3848	gen:	976205		
enc:	3128	enc:	1146021		
dec:	3072	dec:	1094314		
Kyber1024 ($k = 4$, level 5)					
Stack usage (in Bytes)		Cortex-M4 Cycles			
gen:	4360	gen:	1574351		
enc:	3584	enc:	1779192		
dec:	3592	dec:	1708692		

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about lattice design from "symmetrically tainted" benchmarks

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about lattice design from "symmetrically tainted" benchmarks
- Maybe just a small problem, because lattice-based KEMs are all fast enough

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - · Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about lattice design from "symmetrically tainted" benchmarks
- Maybe just a small problem, because lattice-based KEMs are all fast enough
- Better to decide based on
 - size/bandwidth
 - RAM/ROM footprint and gate count in HW
 - simplicity
 - how conservative designs are
 - · cost of SCA protection

Kyber-90s

https://www.bbc.co.uk/bbcthree/article/91603cc1-f159-4c89-9462-443a078945ca

90s crypto (AES, SHA-2) is accelerated in HW!

Kyber-90s performance (Haswell cycles)

Kyber512 ($k = 2$, level 1)					
Kybe	Kyber cycles		Kyber-90s cycles		
gen:	29100		gen:	15792	
enc:	46196		enc:	26612	
dec:	39410		dec:	22248	
Kyber	Kyber768 ($k = 3$, level 3)				
Kybe	r cycles		Kyber-90s cycles		
gen:	57340		gen:	25632	
enc:	78692		enc:	39976	
dec:	68620		dec:	33744	
Kyber	Kyber1024 ($k = 4$, level 5)				
Kyber cycles		Kyber-90s cycles			
gen:	81244		gen:	38164	
enc:	109584		enc:	57280	
dec:	97280		dec:	50360	

Kyber online

https://pq-crystals.org/kyber