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Motivation
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Efficiency of Logic Minimization
Techniques for Cryptographic 

Hardware

Constant search for 

smaller crypto-hardware 

● Proliferation of embedded smart 

devices for the Internet-of-Things.

● Entire device is required to 

○ Fit in a small form factor.

○ Be energy-efficient.

● Small area budget for security. 

?
Efficiency of Logic Minimization

Techniques for Cryptographic 
Hardware
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Boolean Representation of a Cryptographic Function

● Circuits expressed as AND/XOR/NOT 
logic operations.

● Closer estimate of hardware as 
compared to abstract input-output 
relationship.

● Easy to factor out redundant sub-
expressions.
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/

Expectation

Fewer logic gates 

Smaller 
hardware

Gate count 
used to 

compare 
crypto designs 

Specialized 
Tools to 

minimize 
gate count

● Record-setting gate count for 

cryptographic primitives.

● Cost function

Gate count or logical depth

● Designed by Boyar, Peralta et 

al.
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Efficiency of Logic Minimization
Techniques for Cryptographic 

Hardware

Boolean Logic to hardware

● Logical expressions are mapped onto 
a library of “standard cells”.

?
Efficiency of Logic Minimization

Techniques for Cryptographic 
Hardware

● Many possible hardware solutions for a 
single Boolean expression.  

● Choosing the final design is driven by trade-
offs between technology cost factors.
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Technology Cost Factors

• Each cell incurs non-zero Delay before its 
output reflects a change in inputs.

• Each cell comes with a specific Drive Strength, 
i.e. ability to drive logic at its output.

• Area and Power efficiency often come at the expense of performance.

Typical Area-delay trade-off
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Our Contributions

● Circuit-level analysis of low-gate-count (LGC) circuits  

○ Evaluation of LGC designs with widely-used benchmarks for same function, including 
abstract and algebraically minimized versions.

○ Factor the area-performance trade-off -comparing alternatives over multiple frequencies.
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○ Analyze the impact of ASIC implementation flow on LGC circuits.

■ Technology-independent - Gate count

■ Post-synthesis - Impact of logic transformation and mapping

■ Post-layout - Impact of physical design



Evaluation of logic-
minimized circuits

11



Analysis Methodology
Benchmarks

• AES SBox 
• Binary Polynomial Multipliers - 8 to 22 bits
• GF (28) and GF (216) Multipliers 
• GF (28) inverter
• Reed-Solomon Encoder
• Standard and Lightweight AES designs
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● Benchmark 1 : AES SBox

● Design Alternatives

○ Look-Up Table 

○ Canright SBox - Compact SBox using algebraic simplification

○ LGC SBox - Minimized by LGC tool

● Technology-independent Comparison LUT appears to be larger (more gates) 
and slower (more logic levels).

Step 1: Analyzing the Impact of Logic Synthesis

13



02  | SECTION TITLE

Post-synthesis Area of SBox designs

Area of LGC designs 

blows up sooner

LUT design reaches 

higher speeds

LGC vs LUT LGC vs Canright

Minimal-Area 50% smaller 20% smaller

High-Speed 40% larger 25% larger

● Abstract LUT SBox is easily collapsed into 
fewer levels of gates on hardware.

● High XOR-dominance of LGC SBox

○ XOR cell is 2-2.5x bigger than other cells.

Fewer, smaller cells on critical path of LUT 
SBox.

○ LUT: 33 levels (initial) → 14 (post-synthesis)

○ LGC: 17 levels (initial) → 18 (post-synthesis)
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02  | SECTION TITLE

● Pipelining shortens critical path.
○ Easier to meet timing.
○ Cells can be smaller.

Post-synthesis Area of SBox designs

Insert pipeline 

registers

Pipelining arrests 

area blow-up
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Inserting a pipeline stage



02  | SECTION TITLE

Post-synthesis Area of SBox designs

LGC vs LUT LGC vs Canright

Minimal-Area 50% smaller 20% smaller

High-Speed 40% larger 25% larger

High-Speed 

(with pipeline)

± 15% 10-15% larger

Observations

● Smaller fanout per gate         Smaller 
increase in area after pipelining.

● LGC designs - Small fanout per gate.
○ LGC :  ~1.7
○ LUT :  ~2.5
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02  | SECTION TITLE

Post-synthesis Power of SBox designs LGC vs LUT LGC vs Canright

Minimal-Area 15-20% lower 30% lower

High-Speed 40-45% higher 15-20% higher

● LUT SBox is more power-efficient.

Smaller area or fewer gates does not 
imply lower power.

● Pipelining LGC SBox does not 
improve its power-efficiency. 

LGC vs LUT LGC vs Canright

Minimal-Area 15-20% lower 30% lower

High-Speed 30-45% higher 15-20% higher

High-Speed 

(with pipeline)

20-30% higher 10-20% higher
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● Design Alternatives

○ Matrix-Multiplier

○ LGC Multiplier - Minimized by LGC tool

Impact of Logic Synthesis

● Benchmark 2 : Binary Polynomial Multiplier
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● Technology-independent Comparison



Post-synthesis area and power of Polynomial Multipliers

● Area-efficiency of LGC multipliers is lost at high speeds, and the difference worsens with increase in N.

● Power-efficiency of LGC multipliers is lost for all N > 14, regardless of speed. 

In short, a matrix multiplier “scales” better with multiplier size.
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● Area Efficiency

○ Symmetric and regular structure - easily collapsed into fewer levels 
during optimization.

○ Effect of optimization more pronounced with increase in speed and 
multiplier width.
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Regularity in structure of a matrix multiplier

● Power Efficiency

○ Both Matrix and LGC multipliers are XOR-dominant, but matrix is 
power-efficient due to more balanced gate delays. 



Step 2: Impact of Physical Design

● When designs have small differences in gate count, post-synthesis results are liable to be 
flipped.

● Examples: LGC and Canright SBox, LGC and Matrix multipliers for small N.

After synthesis - LGC 50% smaller than LUT After place&route - LGC 40% smaller than LUT

● For large differences in logical gate count, differences in post-layout area of circuits closely follows 
those of their post-synthesis versions.

After synthesis - LGC 20% smaller than Canright
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After place&route - LGC 20% bigger than Canright



How well are logical metrics related to hardware quality metrics?

Correlation of logical gate count to hardware area. Correlation of logical gate count to power.
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● Different SBox circuits integrated into AES designs

○ Demonstrate impact of logical-minimization in practical context.

○ Effect of combined optimization of crypto-primitive with external logic. 

Integrated Design Example

● AES Design Alternatives

○ Standard Version

■ SBox for each byte of State and Key 
Expansion - 20 SBoxes in total 

○ High-throughput

■ Two AES rounds in single cycle -

40 SBoxes in total

○ Lightweight

■ Shared SBoxes - 4 in total 
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02  | SECTION TITLE

Post-synthesis Area of AES designs

● Comparison of cryptographic primitives 
requires context.

Region AES Type LGC vs LUT LGC vs Canright

Minimal-Area

Standard 12-32% smaller 7-13% smaller

High-Throughput 18-33% smaller 5-13% smaller

Lightweight 8% smaller 4-8% smaller

High-Speed

Standard 9-16% smaller 6-14% smaller

High-Throughput 11-19% smaller 1-7% smaller

Lightweight 9% smaller ± 5%

● Benefits of LGC SBox diminish for a 
lightweight version of AES.

Standard LightweightHigh-throughput

At high frequencies, correlation increases due to 
effects of pipelining LGC designs.

24

Region AES Type LGC vs LUT LGC vs Canright

Minimal-Area

Standard 12-32% smaller 7-13% smaller

High-Throughput 18-33% smaller 5-13% smaller

Lightweight 8% smaller 4-8% smaller

High-Speed

Standard 9-16% smaller 6-14% smaller

High-Throughput 11-19% smaller 1-7% smaller

Lightweight 9% smaller ± 5%



Summary of correlation analysis

H - High correlation (>0.8) 

M-Moderate Correlation(0.5-0.8)

L-Low Correlation (<0.5)

→ indicates change in level of correlation

Logical Metric Design
Min-area Region High-Speed Region

Area Power Area Power

Gate Count

SBox H M M L

Polynomial 

Multiplier

N ≤ 14 H H L L

N > 14 H L L L

GF Multiplier M M L L

GF Inverter M M L L

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H

Logical Depth

SBox M L L L

Polynomial 

Multiplier

N ≤ 14 L L H H

N > 14 L H H H

GF Multiplier H H H H

GF Inverter L L M L --> M

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H

Logical Metric Design
Min-area Region High-Speed Region

Area Power Area Power

Gate Count

SBox H M M L

Polynomial 

Multiplier

N ≤ 14 H H L L

N > 14 H L L L

GF Multiplier M M L L

GF Inverter M M L L

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H

Logical Depth

SBox M L L L

Polynomial 

Multiplier

N ≤ 14 L L H H

N > 14 L H H H

GF Multiplier H H H H

GF Inverter L L M L --> M

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H

Logical Metric Design
Min-area Region High-Speed Region

Area Power Area Power

Gate Count

SBox H M M L

Polynomial 

Multiplier

N ≤ 14 H H L L

N > 14 H L L L

GF Multiplier M M L L

GF Inverter M M L L

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H

Logical Depth

SBox M L L L

Polynomial 

Multiplier

N ≤ 14 L L H H

N > 14 L H H H

GF Multiplier H H H H

GF Inverter L L M L --> M

AES

Standard H L L --> M H --> L

High-throughput H L L --> M M

Lightweight M L L --> H H
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Conclusions from analysis of combinatorial primitives

● Conduciveness of a design to logic optimization is not well-quantified by logical 
metrics. 

○ Abstract designs are more flexible towards optimization.

● Use of logical metrics to estimate hardware quality depends on circuit speed. 

○ Low Speed - Logical gate count is a good predictor of area only.

○ High speed - There is no correlation between gate count and hardware quality. 
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Thank you!
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Backup Slides
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Technology Cost Factors

• Area and Power efficiency often come at the expense of performance.

Typical Area-delay trade-off Area-delay trade-off present due to both “sizing” 
and logic modification. 
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Reasons for lower power-efficiency of LGC SBox
● 2.5x more cells in LUT SBox, but only 5-10% more toggles per computation. Why?

Bigger cells in SBox LGC to meet timing - Each toggle of LGC SBox is more expensive.

XOR gates are transparent to dynamic hazards.ROM-structure of LUT SBox results in few active 
cells per computation. 

Flip in[1]
A B Y

~A B ~Y

A ~B ~Y

Delay on one input causes an extra toggle.
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Technology-independent Comparison

Impact of Logic Synthesis

Benchmark 2 : Binary Polynomial Multiplier
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Gates with unbalanced input delays



02  | SECTION TITLE

Post-synthesis Power of AES designs

Low correlation of gate count to power - toggling 
properties not  well-captured by logical metrics.

Region AES Type LGC vs LUT LGC vs Canright

Minimal-Area

Standard 12-25% higher 12-21% lower

High-Throughput 30-40% higher 15% lower

Lightweight 20-25% higher 12-18% lower

High-Speed

Standard 5-20% lower 5-10% lower

High-Throughput 5-15% lower 5% lower

Lightweight 30% lower ~10% lower

Standard LightweightHigh-throughput
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Post-Layout results

Polynomial Multiplier - Area
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Post-Layout results

SBox - Power Polynomial Multiplier- Power
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Correlation of logical depth to hardware metrics
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Lightweight AES Designs - Area and Power
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