Efficient Key Recovery for all HFE Signature Variants

Chengdong Tao, Albrecht Petzoldt, Jintai Ding

3rd NIST Post-Quantum Standardization Conference 07.06.2021

07.06.2021 1 / 22

Multivariate Cryptography

Public Key: System of multivariate quadratic polynomials

$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

$$\vdots$$

$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

Multivariate Cryptography

Public Key: System of multivariate quadratic polynomials

$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

$$\vdots$$

$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

Security based on the

Problem MQ: Given *m* multivariate quadratic polynomials $p^{(1)}(\mathbf{x}), \ldots, p^{(m)}(\mathbf{x})$, find a vector $\bar{\mathbf{x}} = (\bar{x}_1, \ldots, \bar{x}_n)$ such that $p^{(1)}(\bar{\mathbf{x}}) = \ldots = p^{(m)}(\bar{\mathbf{x}}) = 0$.

Albrecht Petzoldt

• isomorphism $\Phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$

イロト 不得 トイヨト イヨト

- isomorphism $\Phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$
- Easily invertible quadratic map $\mathcal{F} : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is quadratic

- isomorphism $\Phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$
- Easily invertible quadratic map $\mathcal{F} : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ $\Rightarrow \overline{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is quadratic
- Two invertible linear maps $\mathcal{T}:\mathbb{F}_q^n\to\mathbb{F}_q^n$ and $\mathcal{S}:\mathbb{F}_q^n\to\mathbb{F}_q^n$

- isomorphism $\Phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$
- Easily invertible quadratic map $\mathcal{F} : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is quadratic
- Two invertible linear maps $\mathcal{T}:\mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{S}:\mathbb{F}_q^n o \mathbb{F}_q^n$
- Public key: $\mathcal{P} = \mathcal{T} \circ \mathcal{F} \circ \mathcal{S}$ supposed to look like a random system

- isomorphism $\Phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$
- Easily invertible quadratic map $\mathcal{F} : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ $\Rightarrow \overline{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is quadratic
- Two invertible linear maps $\mathcal{T}:\mathbb{F}_q^n o \mathbb{F}_q^n$ and $\mathcal{S}:\mathbb{F}_q^n o \mathbb{F}_q^n$
- Public key: $\mathcal{P} = \mathcal{T} \circ \mathcal{F} \circ \mathcal{S}$ supposed to look like a random system
- Private key: $\mathcal{T}, \mathcal{F}, \mathcal{S}$ allows to invert the public key

BigField Signature Schemes

Signature Verification

BigField Signature Schemes

Signature Verification

Signature Generation: Given: message $m \in \{0,1\}^*$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$ compute recursively $\mathbf{w} = \mathcal{H}(m)$, $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w})$, $X = \Phi(\mathbf{x})$, $Y = \mathcal{F}^{-1}(X)$, $\mathbf{y} = \Phi^{-1}(Y)$ and $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{y})$

BigField Signature Schemes

Signature Verification

Signature Generation: Given: message $m \in \{0,1\}^*$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$ compute recursively $\mathbf{w} = \mathcal{H}(m)$, $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w})$, $X = \Phi(\mathbf{x})$, $Y = \mathcal{F}^{-1}(X)$, $\mathbf{y} = \Phi^{-1}(Y)$ and $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{y})$ **Signature Verification**: Given: message $m \in \{0,1\}^*$, signature $\mathbf{z} \in \mathbb{F}_q^n$, public key \mathcal{P} check if $\mathcal{P}(\mathbf{z}) = \mathcal{H}(m)$

Albrecht Petzoldt

HFEv^- - Key Generation

• BigField + Minus Modification + Vinegar Variation

 ▲ ■
 ■
 • ○ < ○</th>

 07.06.2021
 5 / 22

イロト 不得 トイヨト イヨト

HFEv^- - Key Generation

- BigField + Minus Modification + Vinegar Variation
- central map $\mathcal{F}: \mathbb{F}_q^{\nu} \times \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$,

$$\mathcal{F}(X) = \sum_{0 \le i \le j}^{q^i + q^j \le D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \le D} \beta_i(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}}) \cdot X^{q^i} + \gamma(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}})$$

 $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi$ quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^n

イロト 不得下 イヨト イヨト

HFEv⁻ - Key Generation

- BigField + Minus Modification + Vinegar Variation
- central map $\mathcal{F}: \mathbb{F}_q^{\nu} \times \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$,

$$\mathcal{F}(X) = \sum_{0 \le i \le j}^{q^i + q^j \le D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \le D} \beta_i(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}}) \cdot X^{q^i} + \gamma(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}})$$

 $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi \text{ quadratic map from } \mathbb{F}_q^n \text{ to } \mathbb{F}_q^n$ • linear maps $\mathcal{T} : \mathbb{F}_q^n \to \mathbb{F}_q^{n-a}$ and $\mathcal{S} : \mathbb{F}_q^{n+\nu} \to \mathbb{F}_q^{n+\nu}$ of maximal rank

A (1) × A (2) × A (2) ×

HFEv⁻ - Key Generation

- BigField + Minus Modification + Vinegar Variation
- central map $\mathcal{F}: \mathbb{F}_q^{\nu} \times \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$,

$$\mathcal{F}(X) = \sum_{0 \le i \le j}^{q^i + q^j \le D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \le D} \beta_i(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}}) \cdot X^{q^i} + \gamma(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}})$$

 $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi$ quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^n

- linear maps $\mathcal{T}: \mathbb{F}_q^n \to \mathbb{F}_q^{n-a}$ and $\mathcal{S}: \mathbb{F}_q^{n+\nu} \to \mathbb{F}_q^{n+\nu}$ of maximal rank
- Public key: $\mathcal{P} = \mathcal{T} \circ \bar{\mathcal{F}} \circ \mathcal{S} : \mathbb{F}_q^{n+\nu} \to \mathbb{F}_q^{n-a}$

HFEv^- - Key Generation

- BigField + Minus Modification + Vinegar Variation
- central map $\mathcal{F}: \mathbb{F}_q^{\nu} \times \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$,

$$\mathcal{F}(X) = \sum_{0 \le i \le j}^{q^i + q^j \le D} \alpha_{ij} X^{q^i + q^j} + \sum_{i=0}^{q^i \le D} \beta_i(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}}) \cdot X^{q^i} + \gamma(\mathbf{v}_1, \dots, \mathbf{v}_{\mathbf{v}})$$

 $\Rightarrow \bar{\mathcal{F}} = \Phi^{-1} \circ \mathcal{F} \circ \Phi$ quadratic map from \mathbb{F}_q^n to \mathbb{F}_q^n

- linear maps $\mathcal{T}: \mathbb{F}_q^n \to \mathbb{F}_q^{n-a}$ and $\mathcal{S}: \mathbb{F}_q^{n+\nu} \to \mathbb{F}_q^{n+\nu}$ of maximal rank
- Public key: $\mathcal{P} = \mathcal{T} \circ \bar{\mathcal{F}} \circ \mathcal{S} : \mathbb{F}_q^{n+\nu} \to \mathbb{F}_q^{n-a}$
- \bullet Private key: $\mathcal{T},\ \mathcal{F},\ \mathcal{S}$

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

 ↓ ■
 ⊃ へ ○

 07.06.2021
 6/22

イロト イヨト イヨト イヨ

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$ 2

() Compute the hash value
$$\mathbf{w} = \mathcal{H}(m) \in \mathbb{F}_q^{n-a}$$

→ ∢ Ξ

▶ ∢ ⊒

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

() Compute the hash value $\mathbf{w} = \mathcal{H}(m) \in \mathbb{F}_q^{n-a}$

2 Compute
$$\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w}) \in \mathbb{F}_q^n$$
 and $X = \Phi(\mathbf{x}) \in \mathbb{F}_{q^n}$

• • = • • =

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

- $\textcircled{0} \quad \text{Compute the hash value } \textbf{w} = \mathcal{H}(m) \in \mathbb{F}_q^{n-a}$
- 2 Compute $\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w}) \in \mathbb{F}_q^n$ and $X = \Phi(\mathbf{x}) \in \mathbb{F}_{q^n}$
- Solution Choose random values for the vinegar variables v_1, \ldots, v_v

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

() Compute the hash value
$$\mathbf{w} = \mathcal{H}(m) \in \mathbb{F}_q^{n-a}$$

2 Compute
$$\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w}) \in \mathbb{F}_q^n$$
 and $X = \Phi(\mathbf{x}) \in \mathbb{F}_{q^n}$

Solve $\mathcal{F}_{v_1,...,v_v}(Y) = X$ over \mathbb{F}_{q^n} via Berlekamps algorithm

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

$${f 0}$$
 Compute the hash value ${f w}={\cal H}(m)\in {\mathbb F}_q^{n-a}$

2 Compute
$$\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w}) \in \mathbb{F}_q^n$$
 and $X = \Phi(\mathbf{x}) \in \mathbb{F}_{q^n}$

Solve
$$\mathcal{F}_{v_1,...,v_v}(Y) = X$$
 over \mathbb{F}_{q^n} via Berlekamps algorithm

• Compute
$$\mathbf{y} = \Phi^{-1}(Y) \in \mathbb{F}_q^n$$
 and $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{y}||v_1|| \dots ||v_v)$

イロト イヨト イヨト イヨ

Given: message $m \in \{0,1\}^{\star}$, private key $\mathcal{T}, \mathcal{F}, \mathcal{S}$

() Compute the hash value
$$\mathbf{w} = \mathcal{H}(m) \in \mathbb{F}_q^{n-a}$$

2 Compute
$$\mathbf{x} = \mathcal{T}^{-1}(\mathbf{w}) \in \mathbb{F}_q^n$$
 and $X = \Phi(\mathbf{x}) \in \mathbb{F}_{q^n}$

Solve
$$\mathcal{F}_{v_1,\ldots,v_v}(Y) = X$$
 over \mathbb{F}_{q^n} via Berlekamps algorithm

• Compute
$$\mathbf{y} = \Phi^{-1}(Y) \in \mathbb{F}_q^n$$
 and $\mathbf{z} = \mathcal{S}^{-1}(\mathbf{y}||v_1|| \dots ||v_v)$

Signature: $\mathbf{z} \in \mathbb{F}_q^{n+\nu}$.

< □ > < 同 > < 回 > < 回 < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < □ < < □ < < □ < □ < < □ < □ < □ < < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ <

Given: signature $\mathbf{z} \in \mathbb{F}_q^{n+\nu}$, document $m \in \{0,1\}^{\star}$

 ▲ ■
 ■
 𝔍 𝔅

 07.06.2021
 7/22

イロト イヨト イヨト イヨ

Given: signature $\mathbf{z} \in \mathbb{F}_q^{n+\nu}$, document $m \in \{0,1\}^{\star}$

• Compute the hash value $\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}_q^{n-a}$

Given: signature $\mathbf{z} \in \mathbb{F}_q^{n+\nu}$, document $m \in \{0,1\}^{\star}$

- Compute the hash value $\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}_q^{n-a}$
- Compute $\mathbf{w}' = \mathcal{P}(\mathsf{z}) \in \mathbb{F}_q^{n-a}$

Given: signature $\mathbf{z} \in \mathbb{F}_q^{n+\nu}$, document $m \in \{0,1\}^{\star}$

- Compute the hash value $\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}_q^{n-a}$
- Compute $\mathbf{w}' = \mathcal{P}(\mathbf{z}) \in \mathbb{F}_q^{n-a}$
- Accept the signature $\mathbf{z} \Leftrightarrow \mathbf{w}' = \mathbf{w}$.

• direct attack (signature forgery) degree of regularity is bounded by

$$\begin{cases} \frac{(q-1)(d+v+a-1)}{2} + 2 & \text{if } q \text{ is even and } d+a \text{ is odd,} \\ \frac{(q-1)(d+v+a)}{2} + 2 & \text{otherwise.} \end{cases} (d = \lfloor \log_q D \rfloor)$$

• direct attack (signature forgery) degree of regularity is bounded by

$$\begin{cases} \frac{(q-1)(d+v+a-1)}{2} + 2 & \text{if } q \text{ is even and } d+a \text{ is odd,} \\ \frac{(q-1)(d+v+a)}{2} + 2 & \text{otherwise.} \end{cases} (d = \lfloor \log_q D \rfloor)$$

• MinRank attack (key recovery) min-Q-rank: degree of the public key as a quadratic form over the extension field

• direct attack (signature forgery) degree of regularity is bounded by

$$\begin{cases} \frac{(q-1)(d+v+a-1)}{2} + 2 & \text{if } q \text{ is even and } d+a \text{ is odd,} \\ \frac{(q-1)(d+v+a)}{2} + 2 & \text{otherwise.} \end{cases} (d = \lfloor \log_q D \rfloor)$$

 MinRank attack (key recovery) min-Q-rank: degree of the public key as a quadratic form over the extension field min-Q-rank is bounded by d + a + v

• direct attack (signature forgery) degree of regularity is bounded by

$$\begin{cases} \frac{(q-1)(d+v+a-1)}{2} + 2 & \text{if } q \text{ is even and } d+a \text{ is odd,} \\ \frac{(q-1)(d+v+a)}{2} + 2 & \text{otherwise.} \end{cases} (d = \lfloor \log_q D \rfloor)$$

 MinRank attack (key recovery) min-Q-rank: degree of the public key as a quadratic form over the extension field min-Q-rank is bounded by d + a + v

$$\mathcal{O}\left(\binom{n+d+a+v+1}{d+a+v+1}^{\omega}\right),$$

Our Result

We propose a MinRank style attack against all HFE signature variants. The complexity of our attack is

$$\mathcal{O}\left(\left(egin{array}{c} \mathsf{n}+\mathsf{d}+\mathsf{v}+1\ \mathsf{d}+1 \end{array}
ight)^\omega
ight)$$

.

Our Result

We propose a MinRank style attack against all HFE signature variants. The complexity of our attack is

$$\mathcal{O}\left({\binom{{\mathsf{n}}+{\mathsf{d}}+{\mathsf{v}}+1}{{\mathsf{d}}+1}}^\omega
ight)$$

• independent of *a*

< E

Our Result

We propose a MinRank style attack against all HFE signature variants. The complexity of our attack is

$$\mathcal{O}\left(\left(egin{array}{c} n+d+v+1 \ d+1 \end{array}
ight)^{\omega}
ight)$$

- independent of *a*
- polynomial in v

Preliminaries

• We use the matrix representation of the HFE central map, i.e.

$$\mathcal{F}(X, x_1, \dots, x_{\nu}) = (X, X^q, \dots, X^{q^{n-1}}, x_1, \dots, x_{\nu}) F^{*0}(X, X^q, \dots, X^{q^{n-1}}, x_1, \dots, x_{\nu})^t \text{ with}$$

$$F^{*0} = \begin{pmatrix} \alpha_{00} & \alpha_{01} & \cdots & \alpha_{0,n-1} & \gamma_{00} & \gamma_{01} & \cdots & \gamma_{0,\nu-1} \\ \alpha_{10} & \alpha_{11} & \cdots & \alpha_{1,n-1} & \gamma_{10} & \gamma_{11} & \cdots & \gamma_{1,\nu-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-1} & \gamma_{n-1,0} & \gamma_{n-1,1} & \cdots & \gamma_{n-1,\nu-1} \\ \beta_{00} & \beta_{01} & \cdots & \beta_{0,n-1} & \delta_{00} & \delta_{01} & \cdots & \delta_{0,\nu-1} \\ \beta_{10} & \beta_{11} & \cdots & \beta_{1,n-1} & \delta_{10} & \delta_{11} & \cdots & \delta_{1,\nu-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_{\nu-1,0} & \beta_{\nu-1,1} & \cdots & \beta_{\nu-1,n-1} & \delta_{\nu-1,0} & \delta_{\nu-1,1} & \cdots & \delta_{\nu-1,\nu-1} \end{pmatrix}$$

イロト イヨト イヨト イ

Preliminaries

• We use the matrix representation of the HFE central map, i.e.

$$\mathcal{F}(X, x_{1}, \dots, x_{v}) = (X, X^{q}, \dots, X^{q^{n-1}}, x_{1}, \dots, x_{v}) F^{*0}(X, X^{q}, \dots, X^{q^{n-1}}, x_{1}, \dots, x_{v})^{t} \text{ with}$$

$$F^{*0} = \begin{pmatrix} \alpha_{00} & \alpha_{01} & \cdots & \alpha_{0,n-1} & \gamma_{00} & \gamma_{01} & \cdots & \gamma_{0,v-1} \\ \alpha_{10} & \alpha_{11} & \cdots & \alpha_{1,n-1} & \gamma_{10} & \gamma_{11} & \cdots & \gamma_{1,v-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n-1,0} & \alpha_{n-1,1} & \cdots & \alpha_{n-1,n-1} & \gamma_{n-1,0} & \gamma_{n-1,1} & \cdots & \gamma_{n-1,v-1} \\ \beta_{00} & \beta_{01} & \cdots & \beta_{0,n-1} & \delta_{00} & \delta_{01} & \cdots & \delta_{0,v-1} \\ \beta_{10} & \beta_{11} & \cdots & \beta_{1,n-1} & \delta_{10} & \delta_{11} & \cdots & \delta_{1,v-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_{v-1,0} & \beta_{v-1,1} & \cdots & \beta_{v-1,n-1} & \delta_{v-1,0} & \delta_{v-1,1} & \cdots & \delta_{v-1,v-1} \end{pmatrix}$$

$$\Rightarrow \text{ We get}$$

$$\mathcal{F}^{q^{k}}(X, x_{1}, \dots, x_{v}) = (X, X^{q}, \dots, X^{q^{n-1}}, x_{1}, \dots, x_{v}) F^{*k}(X, X^{q}, \dots, X^{q^{n-1}}, x_{1,v}, x_{v})^{t}, y_{0}$$

Albrecht Petzoldt

• We use a morphism $\Phi: \mathbb{F}_{q^n} \to \mathbb{F}_q^n$ given by the matrix

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \theta & \theta^{q} & \cdots & \theta^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \theta^{n-1} & (\theta^{n-1})^{q} & \cdots & (\theta^{n-1})^{q^{n-1}} \end{pmatrix},$$

 $(\theta \text{ is a generator of } \mathbb{F}_{q^n})$

▶ < ∃ ▶</p>

(1)

• We use a morphism $\Phi : \mathbb{F}_{q^n} \to \mathbb{F}_q^n$ given by the matrix

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \theta & \theta^{q} & \cdots & \theta^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \theta^{n-1} & (\theta^{n-1})^{q} & \cdots & (\theta^{n-1})^{q^{n-1}} \end{pmatrix}$$

 $(\theta \text{ is a generator of } \mathbb{F}_{q^n})$

• We get $\Phi(V) = (V, V^q, \dots, V^{q^{n-1}}) \cdot M^{-1} =: (v_1, \dots, v_n)$ and $\Phi^{-1}(v_1, \dots, v_n) = \text{first component of } (v_1, \dots, v_n) \cdot M$

,

• We use a morphism $\Phi : \mathbb{F}_{q^n} \to \mathbb{F}_q^n$ given by the matrix

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \theta & \theta^{q} & \cdots & \theta^{q^{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \theta^{n-1} & (\theta^{n-1})^{q} & \cdots & (\theta^{n-1})^{q^{n-1}} \end{pmatrix}$$

 $(\theta \text{ is a generator of } \mathbb{F}_{q^n})$

- We get $\Phi(V) = (V, V^q, \dots, V^{q^{n-1}}) \cdot M^{-1} =: (v_1, \dots, v_n)$ and $\Phi^{-1}(v_1, \dots, v_n) = \text{ first component of } (v_1, \dots, v_n) \cdot M$
- In order to cover the Vinegar variables, we define

$$\widetilde{M} = \left(\begin{array}{cc} M & 0\\ 0 & I_{\nu} \end{array}\right)$$

(1)

,

• We get

$$(v_1, v_2, \cdots, v_n, x_1, \cdots, x_v) \cdot \widetilde{M} = (V, V^q, \cdots, V^{q^{n-1}}, x_1, \cdots, x_v),$$

イロト 不得 トイヨト イヨト

• We get

$$(v_1, v_2, \cdots, v_n, x_1, \cdots, x_v) \cdot \widetilde{M} = (V, V^q, \cdots, V^{q^{n-1}}, x_1, \cdots, x_v),$$

• Let S and T be the matrices representing the linear parts of S and T. From $\mathcal{F} = (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v}) F^{*0} (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v})^{t},$ we find

$$\left(\widetilde{M}^{-1} S^{-1} P_0(S^{-1})^t (\widetilde{M}^{-1})^t, \cdots, \widetilde{M}^{-1} S^{-1} P_{n-a-1}(S^{-1})^t (\widetilde{M}^{-1})^t \right)$$

= $\left(F^{*0}, \cdots, F^{*n-1} \right) M^{-1} T$

• We get

$$(v_1, v_2, \cdots, v_n, x_1, \cdots, x_v) \cdot \widetilde{M} = (V, V^q, \cdots, V^{q^{n-1}}, x_1, \cdots, x_v),$$

• Let S and T be the matrices representing the linear parts of S and T. From $\mathcal{F} = (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v}) \mathcal{F}^{*0} (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v})^{t},$ we find

$$\left(\widetilde{M}^{-1} S^{-1} P_0 (S^{-1})^t (\widetilde{M}^{-1})^t, \cdots, \widetilde{M}^{-1} S^{-1} P_{n-a-1} (S^{-1})^t (\widetilde{M}^{-1})^t \right)$$

= $\left(F^{*0}, \cdots, F^{*n-1} \right) M^{-1} T$

• Denoting $U = \widetilde{M}^{-1}S^{-1}$ and $W = M^{-1}T$ yields $(UP_0U^t, \cdots, UP_{n-a-1}U^t) = (F^{*0}, \cdots, F^{*n-1})W_{n-a-1} = 0$

• We get

$$(v_1, v_2, \cdots, v_n, x_1, \cdots, x_v) \cdot \widetilde{M} = (V, V^q, \cdots, V^{q^{n-1}}, x_1, \cdots, x_v),$$

• Let S and T be the matrices representing the linear parts of S and T. From $\mathcal{F} = (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v}) \mathcal{F}^{*0} (X, X^{q}, \cdots, X^{q^{n-1}}, x_{1}, \cdots, x_{v})^{t},$ we find

$$\left(\widetilde{M}^{-1} S^{-1} P_0(S^{-1})^t (\widetilde{M}^{-1})^t, \cdots, \widetilde{M}^{-1} S^{-1} P_{n-a-1}(S^{-1})^t (\widetilde{M}^{-1})^t \right)$$

= $\left(F^{*0}, \cdots, F^{*n-1} \right) M^{-1} T$

• Denoting $U = \widetilde{M}^{-1}S^{-1}$ and $W = M^{-1}T$ yields

$$(UP_0U^t,\cdots,UP_{n-a-1}U^t)=(F^{*0},\cdots,F^{*n-1})W_{\text{COD}}$$

Albrecht Petzoldt

07.06.2021 12/22

• Let \mathbf{a}_i be the first row of the matrix $F^{\star i}$ (i = 1, ..., n-1)

イロト イヨト イヨト イヨ

Recovering S

- Let \mathbf{a}_i be the first row of the matrix $F^{\star i}$ (i = 1, ..., n-1)
- We can show

Lemma

The rank of the matrix
$$Q = W^t \cdot \begin{pmatrix} \mathbf{a}_0 \\ \vdots \\ \mathbf{a}_{n-1} \end{pmatrix}$$
 is at most $d = \lceil \log_q(D) \rceil$.

In particular, we have

$$\begin{array}{c} \mathbf{a}_{0} \\ \mathbf{a}_{1} \\ \cdots \\ \mathbf{a}_{n-1} \end{array} \right) = \left(\begin{array}{c} A_{1} \\ 0 \\ A_{2} \end{array} \right)$$

,

Albrecht Petzoldt

Key Recovery for HFE Signatures

◆ 注 → 注 → へへ
 の
 へ
 の
 へ
 の
 つ
 へ
 の
 つ
 い
 つ
 へ
 つ
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 へ
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い
 い

• • • • • • • •

Recovering S(2)

• From the Lemma we directly follow

Theorem

Let $\mathbf{u} = (u_0, u_1, \dots, u_{n+\nu-1})$ be the first row of U and $\mathbf{b}_i = (u_0, u_1, \dots, u_{n+\nu-1})P_i$, ($i = 0, 1, \dots, n-a$). Define $Z \in \mathcal{M}_{(n-a)\times(n+\nu)}(\mathbb{F}_{q^n})$ as the matrix whose row vectors are the \mathbf{b}_i . Then the rank of Z is at most d.

Recovering S(2)

• From the Lemma we directly follow

Theorem

Let $\mathbf{u} = (u_0, u_1, \dots, u_{n+\nu-1})$ be the first row of U and $\mathbf{b}_i = (u_0, u_1, \dots, u_{n+\nu-1})P_i$, ($i = 0, 1, \dots, n-a$). Define $Z \in \mathcal{M}_{(n-a)\times(n+\nu)}(\mathbb{F}_{q^n})$ as the matrix whose row vectors are the \mathbf{b}_i . Then the rank of Z is at most d.

• Furthermore we get

Lemma

Let A be an $m \times n$ matrix over \mathbb{F}_q and $B = [b_{ij}] = M^{-1}A$. Then we have

$$b_{ij} = b_{i-1,j}^q$$
, for all i, j , with $0 \le i < n, 0 \le j < m$.

i.e. the matrix B is determined by its first row.

イロト 不得下 イヨト イヨト

• Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.

イロト イヨト イヨト イヨ

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.
- Denote the first row of U by $u_0, \ldots, u_{n+\nu-1}$

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.
- Denote the first row of U by $u_0, \ldots, u_{n+\nu-1}$
- Since we have to find only one of many equivalent keys, we can assume that $u_0 = 1$ holds.

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.
- Denote the first row of U by $u_0, \ldots, u_{n+\nu-1}$
- Since we have to find only one of many equivalent keys, we can assume that $u_0 = 1$ holds.
- Since the rank of Z is ≤ d, we can find u₁,..., u_{n+v-1} by solving a MinRank problem over the base field 𝔽_q with target rank d

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.
- Denote the first row of U by $u_0, \ldots, u_{n+\nu-1}$
- Since we have to find only one of many equivalent keys, we can assume that $u_0 = 1$ holds.
- Since the rank of Z is ≤ d, we can find u₁,..., u_{n+v-1} by solving a MinRank problem over the base field 𝔽_q with target rank d
- We can find the first n of U using the Frobenius isomorphism

- Since we have $U = \widetilde{M}^{-1}S^{-1}$, it's enough to find U.
- We only have to find the first row of U to get the first n rows of U.
- Denote the first row of U by $u_0, \ldots, u_{n+\nu-1}$
- Since we have to find only one of many equivalent keys, we can assume that $u_0 = 1$ holds.
- Since the rank of Z is ≤ d, we can find u₁,..., u_{n+v-1} by solving a MinRank problem over the base field 𝔽_q with target rank d
- We can find the first n of U using the Frobenius isomorphism
- The remaining rows of U can be chosen at random such that U is invertible

Recovering S - The Algorithm

Input: HFEv- parameters (q, n, v, D, a), matrices (P_0, \dots, P_{n-a-1}) , matrix \overline{M} **Output:** Equivalent linear transformation S.

- 1: Set $\mathbf{b}_i = (1, u_1, \cdots, u_{n+\nu-1})P_i$, $0 \le i < n-a$, where $(u_1, \cdots, u_{n+\nu-1})$ are unknowns.
- 2: Construct a matrix Z whose row vectors are \mathbf{b}_i , $0 \le i < n a$.
- 3: Solve a MinRank problem for Z to find the unknowns $u_1, \cdots u_{n+\nu-1}$.

4: Set
$$U = \begin{pmatrix} 1 & u_1 & \cdots & u_{n+\nu-1} \\ 1 & u_1^q & \cdots & u_{n+\nu-1}^q \\ \vdots & \vdots & \ddots & \vdots \\ 1 & u_1^{q^{n-1}} & \cdots & u_{n+\nu-1}^{q^{n-1}} \\ r_{00} & r_{01} & \cdots & r_{0,n+\nu-1} \\ \vdots & \vdots & \ddots & \vdots \\ r_{\nu-1,0} & r_{\nu-1,1} & \cdots & r_{\nu-1,n+\nu-1} \end{pmatrix}$$
,
5: Compute $S' = (\widetilde{M}U)^{-1}$.
6: **return** S' .

Albrecht Petzoldt

Recovering ${\mathcal F}$ and ${\mathcal T}$

We can show

Lemma

As soon as U is known, we can recover F^{*0} by solving a determined linear system with n - a - 1 variables, $(d + a) \cdot (n + v)$ additional linear equations in at most d + v variables, and $\binom{v+1}{2}$ univariate polynomial equations of degree q^d .

Recovering ${\mathcal F}$ and ${\mathcal T}$

We can show

Lemma

As soon as U is known, we can recover F^{*0} by solving a determined linear system with n - a - 1 variables, $(d + a) \cdot (n + v)$ additional linear equations in at most d + v variables, and $\binom{v+1}{2}$ univariate polynomial equations of degree q^d .

• We can use $F^{\star 0}$ to compute all $F^{\star i}$ (i = 1, ..., n-1)

Recovering ${\mathcal F}$ and ${\mathcal T}$

We can show

Lemma

As soon as U is known, we can recover F^{*0} by solving a determined linear system with n - a - 1 variables, $(d + a) \cdot (n + v)$ additional linear equations in at most d + v variables, and $\binom{v+1}{2}$ univariate polynomial equations of degree q^d .

- We can use $F^{\star 0}$ to compute all $F^{\star i}$ $(i = 1, \dots, n-1)$
- Furthermore we get

Lemma

As soon as the matrices $F^{*j}(0 \le j < n)$ are known, T can be recovered by solving a system of n - a linear equations in n variables.

Complexity of the Attack

• Most costly Step: Solution of the MinRank problem (target rank d)

 ▲ ■
 ■

 </

→ ∢ Ξ

Complexity of the Attack

- Most costly Step: Solution of the MinRank problem (target rank d)
- Two Possibilities
- Minors Modelling: Degree of Regularity in F_4 : d + 1

$$\mathcal{O}\left(\begin{pmatrix} n+v+d+1\\ d+1 \end{pmatrix}^{\omega}
ight),$$

Complexity of the Attack

- Most costly Step: Solution of the MinRank problem (target rank d)
- Two Possibilities
- Minors Modelling: Degree of Regularity in F_4 : d + 1

$$\mathcal{O}\left(\binom{n+v+d+1}{d+1}^{\omega} \right),$$

• Support Minors Modelling

we don't have a unique solution of the MinRank Problem \Rightarrow We solve the system by F_4 Experiments \Rightarrow degree of regularity 3

$$\mathcal{O}\left((n+v)^2\binom{2d+2}{d}+(n+v)\binom{2d+2}{d}^2\right)^{\omega}$$

NIST			required	our attack using	
security		parameters	security	minors	support minors
category		(q, n, v, D, a)	level	modeling	modeling
I	GeMSS128	(2,174,12,513,12)		139	118
	BlueGeMSS128	(2,175,14,129,13)	143	119	99
	RedGeMSS128	(2,177,15,17,15)		86	72
11	GeMSS192	(2,265,20,513,22)		154	120
	BlueGeMSS192	(2,265,23,129,22)	207	132	101
	RedGeMSS192	(2,266,25,17,23)		95	75
	GeMSS256	(2,354,33,513,30)		166	121
	BlueGeMSS256	(2,358,32,129,34)	272	141	103
	RedGeMSS256	(2,358,35,17,34)		101	76

・ロト ・四ト ・ヨト ・ヨト 三日

• The proposed parameters for GeMMS don't reach the required security levels.

Image: A image: A

- **1** The proposed parameters for GeMMS don't reach the required security levels.
- Speeding up the signature generation process of GeMSS by decreasing D while increasing a and v is not possible.
 - \Rightarrow Modifications as in BlueGeMSS and RedGeMSS are not possible

- The proposed parameters for GeMMS don't reach the required security levels.
- Speeding up the signature generation process of GeMSS by decreasing D while increasing a and v is not possible.

 \Rightarrow Modifications as in BlueGeMSS and RedGeMSS are not possible

So For high levels of security, we need very high values of D
 e.g. NIST security level III: d ≥ 20 or D ≥ 2¹⁹ + 1 = 524.289
 ⇒ Drastical slow down of the signature generation process

- **①** The proposed parameters for GeMMS don't reach the required security levels.
- Speeding up the signature generation process of GeMSS by decreasing D while increasing a and v is not possible.

 \Rightarrow Modifications as in BlueGeMSS and RedGeMSS are not possible

So For high levels of security, we need very high values of D
 e.g. NIST security level III: d ≥ 20 or D ≥ 2¹⁹ + 1 = 524.289
 ⇒ Drastical slow down of the signature generation process

The Techniques used in GeMSS don't suffice to create a HFE based signature scheme which is both efficient and reaches high levels of security

Conclusion

We proposed a new MinRank type attack against HFE signature variants. The complexity is

$$\mathcal{O}\left(\begin{pmatrix} n+d+v+1 \\ d+1 \end{pmatrix}^{\omega}
ight)$$

- exponential in d
- polynomial in v
- independent of a

Conclusion

We proposed a new MinRank type attack against HFE signature variants. The complexity is

$$\mathcal{O}\left(\left(egin{array}{c} n+d+v+1 \ d+1 \end{array}
ight)^{\omega}
ight)$$

- exponential in d
- polynomial in v
- independent of a

Consequences

- We can't speed up HFEv⁻ by decreasing d while increasing a and v
- For high levels of security we need a large d

Conclusion

We proposed a new MinRank type attack against HFE signature variants. The complexity is

$$\mathcal{O}\left(egin{pmatrix} n+d+v+1\ d+1 \end{pmatrix}^{\omega}
ight)$$

- exponential in d
- polynomial in v
- independent of a

Consequences

- We can't speed up HFEv⁻ by decreasing d while increasing a and v
- For high levels of security we need a large d

 \Rightarrow Can we build an HFE based signature scheme which is both efficient and offers a high level of security?

Thank you for your Attention

Find our paper at https://eprint.iacr.org/2020/1424.pdf

Albrecht Petzoldt

Key Recovery for HFE Signatures

 Image: bold with the second second