Fast Multiparty Threshold ECDSA with Fast Trustless Setup

Rosario Gennaro

City College of NY

Steven Goldfeder
Cornell Tech

Digital Signature Algorithm (DSA)

Given

- a group G of order N
- a generator g
- a private key x

To sign a message m:

- pick a nonce k s.t. $1 \leq k \leq q-1$
- $R=g^{k}$
- $s=k^{-1}(m+x \cdot r) \bmod q$

Signature is (r, s)

GJKR Threshold DSA

Includes multiplication of Shamir shares
R. Gennaro , S. Jarecki, H. Krawczyk and T. Rabin. Threshold DSS Signatures. EUROCRYPT ‘96.

Shamir's Secret Sharing (Shamir'79)

- If you have a secret s
- an integer modulo a prime q
- Consider the polynomial $F(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t}$
- where $a_{0}=s$
- Give player P_{i} the share $s_{i}=F(i)$
- t+1 players can recover the secret
- t or less have no information about s
- any value is consistent with their shares

Addition of shares is easy

- If you have two secrets a, b shared via Shamir
- a, with polynomial $F(x)$ and shares a_{i}
- b, with polynomial $G(x)$ and shares b_{i}
- Players can reconstruct $c=a+b$ by
- revealing $c_{i}=a_{i}+b_{i}$
- A point on the polynomial $(F+G)(x)$
- still of degree t
- no other information about a, b is released

Problem: Multiplication

$$
r=g^{k}
$$

$$
s=k^{-1}(m+x \cdot r) \bmod q
$$

If a and b are shared on degree t polynomials
$a \times b$ will be shared on a degree $2 t$ polynomial
\rightarrow Need $2 t+1$ players to sign
BUT $t+1$ corrupted players can compromise security!

Requires extra participants

Need $2 t+1$ players to sign
BUT $t+1$ corrupted players can compromise security

2-out-of-2 threshold not possible

Threshold optimality

Given a (t, n)-threshold signature scheme, obviously t + 1 honest players are necessary to generate signatures. We say that a scheme is threshold-optimal if $\mathrm{t}+1$ honest players also suffice.

Previous work

t-out-of-n: GGN16, BGG17

However it required a dealer to generate and share the secret key x to the players (in practice)

2-out-of-2: MR01, L17, D+18

Multiplicative-to-additive conversion (MtA)

a

$$
s=a \times b
$$

$$
b^{\prime}=\operatorname{func}\left(c_{1}, c_{2}\right)
$$

$a^{\prime}=\operatorname{func}\left(c_{1}, c_{2}\right)$

$$
a^{\prime}+b^{\prime}=a \times b=s
$$

Additively Homomorphic Encryption

- An encryption scheme E such that if $c_{1}=E\left(m_{1}\right)$ and $c_{2}=E\left(m_{2}\right)$ then
- there exists an operation \oplus such that
- $c_{1} \oplus c_{2}=E\left(m_{1}+m_{2} \bmod N\right)$
- Note that this means that if a is an integer we can also compute
- $E\left(a m_{1}\right)=c_{1} \oplus \ldots \oplus c_{1}=a \otimes c_{1}$
- Example: Paillier's encryption scheme where N is an RSA modulus.

Multiplicative-to-additive conversion (MtA -- Gilboa)

$$
s=a \times b \bmod q
$$

C_{2}

$$
c_{2}=c_{1} \otimes b \oplus m=E_{A}(a b+m)
$$

$a^{\prime}=D_{A}\left(c_{2}\right)$

$$
b^{\prime}=-\mathrm{m}
$$

$$
a^{\prime}+b^{\prime}=(a b+m)+(-m)=a \times b=s
$$

Paillier Modulus

We will choose the Paillier modulus N large enough so that operations modulo N will not "wrap around" and will be consistent to doing them over the integers.

However ...

- If a, b, m are in Z_{q} and $\mathrm{N}>\mathrm{q}^{3}$ protocol will work
- Players can maliciously choose their values to be larger
- Protocol will fail, but failure may reveal information about the honest players' input
- Two options
- Expensive: Include a range proof. No additional assumptions
o Cheaper: No range proof. Assume that information leaked will not help forging DSA signatures

GMW product

$$
a=a_{1}+a_{2}+\ldots+a_{n} \quad b=b_{1}+b_{2}+\ldots+b_{n}
$$

P_{i} engages in two (2) MtA protocols with every other party P_{j}

GMW product

$$
a=a_{1}+a_{2}+\ldots+a_{n}
$$

$$
b=b_{1}+b_{2}+\ldots+b_{n}
$$

Sharing a product

$$
a=a_{1}+a_{2}+\ldots+a_{n} \quad b=b_{1}+b_{2}+\ldots+b_{n}
$$

P_{i} 's share is

$$
a_{a_{i}} b_{i}+\sum_{j}\left(\alpha_{i j}+\beta_{\mathrm{ji}}\right)
$$

Threshold ECDSA from MtA

Key generation

- Players distributedly generate Shamir shares of a secret key x
- Each player contributes randomness to x and distributes shares to all other players
- Each players ends up with a key share x_{i}
- Everyone learns public key $\mathrm{y}=\mathrm{g}^{\mathrm{x}}$

Computing $\mathrm{R}=\mathrm{g}^{\mathrm{k}}$

- Beaver's trick
- Distributively generate shared random values k and γ
- Every player has shares k_{i} and γ_{i}
- Use MtA to get additive shares δ_{i} of $\delta=\mathrm{k} \mathrm{\gamma}$
- Reveal δ and g^{k}
- via interpolation and interpolation in the exponent respectively
- Each player sets $\mathrm{t}_{\mathrm{i}}=\delta^{-1} \gamma_{i}$
o the t_{i} interpolate to k^{-1}

Computing $s=k^{-1}(m+x r)$

- Use MtA protocol on shares of k^{-1} and x
o End up with shares s_{i} of s

Cannot publish s_{i} until checking that the signature is correct

The problem

- Adversary might have not inputted correct values in the MtA protocols
- Shares of s are now incorrect
- Players could detect that by checking if the signature actually verifies or not
- But the incorrect share held by the good players may reveal information
- Solution: randomize the shares so that
- if they are correct the signature verifies
- if they are incorrect the shares of good players are mapped to random points

Distributed validity test

- $\mathbf{R}^{\mathbf{s}}=\mathbf{g}^{-m} \mathbf{y}^{-r}$
- Each player reveals $\mathrm{R}^{\text {si }}$ masked by $\mathrm{g}^{\text {li }}$
- $V_{i}=R^{\text {si }} g^{l i}$
- $\mathbf{V}=\mathbf{g}^{-m} \mathbf{y}^{-r}$ Prod V_{i} should be g^{1}
- Players can check that via a distributed Diffie-Hellman
- Broadcast $A_{i}=$ gri $^{\text {ri }}$
- $A=\operatorname{Prod} A_{i}=g^{r}$
- Broadcast $T_{i}=A^{l i}$ and $U_{i}=V^{r i}$

■ Prod T_{i} should be equal to Prod U_{i} (both $\mathrm{g}^{\text {lr }}$)

- pseudorandom values if test fails (under DDH)

Security Proof \& Extensions

- Main proof in the paper is in the game-based definition of security
- It is hard to forge DSA signatures even if controlling t players
- Simulation based proof is possible for our protocol if players prove knowledge of their inputs to all MtA protocols
- does not have to be range proofs necessarily
- MtA protocol is used as a black box
- can use any, including the OT based one by Gilboa in the malicious adversary version presented earlier
- Open source implementation by KZen Networks
- https://github.com/KZen-networks/multi-party-ecdsa

