
Fast Multiparty Threshold ECDSA with Fast
Trustless Setup

Rosario Gennaro Steven Goldfeder
City College of NY Cornell Tech

Digital Signature Algorithm (DSA)

Given

• a group G of order N

• a generator g

• a private key x

To sign a message m:

• pick a nonce k s.t. 1 ≤ k ≤ q – 1

• R = gk

• s = k-1(m + x⋅r) mod q

Signature is (r,s)

ECDSA is DSA over an elliptic curve group

GJKR Threshold DSA

Includes multiplication of Shamir shares

R. Gennaro , S. Jarecki, H. Krawczyk and T. Rabin. Threshold DSS Signatures.
EUROCRYPT ‘96.

Shamir’s Secret Sharing (Shamir’79)

• If you have a secret s

– an integer modulo a prime q

• Consider the polynomial F(x)=a0+a1x+...+atx
t

– where a0=s

• Give player Pi the share si=F(i)

– t+1 players can recover the secret

– t or less have no information about s
• any value is consistent with their shares

Addition of shares is easy

• If you have two secrets a,b shared via Shamir

– a, with polynomial F(x) and shares ai

– b, with polynomial G(x) and shares bi

• Players can reconstruct c=a+b by

– revealing ci=ai+bi

– A point on the polynomial (F+G)(x)

– still of degree t

– no other information about a,b is released

Problem: Multiplication

If a and b are shared on degree t polynomials

a × b will be shared on a degree 2t polynomial

➔ Need 2t + 1 players to sign

BUT t + 1 corrupted players can compromise security!

r = gk

s = k-1(m + x⋅r) mod q

Requires extra participants

Need 2t + 1 players to sign

BUT t + 1 corrupted players can compromise security

2-out-of-2 threshold not possible

Threshold optimality

Given a (t, n)-threshold signature scheme, obviously t + 1

honest players are necessary to generate signatures. We say

that a scheme is threshold-optimal if t + 1 honest players also

suffice.

Previous work

t-out-of-n: GGN16, BGG17

However it required a dealer to generate and share the secret key x to the players (in
practice)

2-out-of-2: MR01, L17, D+18

Multiplicative-to-additive conversion (MtA)

a bs = a × b

c1

c2

b’ = func(c1,c2)
a’ = func(c1,c2)

a’ + b’ = a × b = s

Additively Homomorphic Encryption

● An encryption scheme E such that if c1 = E(m1) and c2=E(m2) then

○ there exists an operation ⊕ such that

■ c1 ⊕ c2 = E(m1+m2 mod N)

● Note that this means that if a is an integer we can also compute

○ E(am1) = c1 ⊕… ⊕ c1 = a ⊗ c1

● Example: Paillier’s encryption scheme where N is an RSA modulus.

Multiplicative-to-additive conversion (MtA -- Gilboa)

a bs = a × b mod q

c1 = EA(a)

c2 =c1⊗b⊕m = EA(ab + m)

m
c1

c2

b’ = -m
a’ = DA(c2)

a’ + b’ = (ab + m) + (-m) = a × b = s

Paillier Modulus

We will choose the Paillier modulus N large enough so that

operations modulo N will not “wrap around” and will be consistent

to doing them over the integers.

However ...

● If a, b, m are in Zq and N > q3 protocol will work

● Players can maliciously choose their values to be larger

○ Protocol will fail, but failure may reveal information about the

honest players’ input

● Two options

○ Expensive: Include a range proof. No additional assumptions

○ Cheaper: No range proof. Assume that information leaked will

not help forging DSA signatures

GMW product a = a1 + a2 + … + an b = b1 + b2 + … + bn

a1 , b1 a2 , b2 a3 , b3

Pi engages in two (2) MtA protocols with every other party Pj

a × b = Σaibj

GMW product a = a1 + a2 + … + an b = b1 + b2 + … + bn

a1 , b1 a2 , b2 a3 , b3

MtA 1

MtA

MtA 2

MtA

a × b = Σaibj

Sharing a product a = a1 + a2 + … + an b = b1 + b2 + … + bn

a1 , b1 a2 , b2 a3 , b3

a × b = Σaibj

Pi’s share is

aibi + Σj (αij + βji)

Threshold ECDSA from MtA

Key generation

● Players distributedly generate Shamir shares of a secret key x
○ Each player contributes randomness to x and distributes shares to all other

players

● Each players ends up with a key share xi

● Everyone learns public key y = gx

Computing R=gk

● Beaver’s trick

● Distributively generate shared random values k and ɣ

○ Every player has shares ki and ɣi

● Use MtA to get additive shares 𝛿i of 𝛿 = kɣ

● Reveal 𝛿 and gk

○ via interpolation and interpolation in the exponent respectively

● Each player sets ti=𝛿
-1 ɣi

○ the ti interpolate to k-1

Computing s=k-1(m+xr)

● Use MtA protocol on shares of k-1 and x

○ End up with shares si of s

Cannot publish si until checking that the signature is correct

The problem

● Adversary might have not inputted correct values in the MtA protocols

● Shares of s are now incorrect
○ Players could detect that by checking if the signature actually verifies or not

○ But the incorrect share held by the good players may reveal information

● Solution: randomize the shares so that
○ if they are correct the signature verifies

○ if they are incorrect the shares of good players are mapped to random points

Distributed validity test

● Rs = g-m y-r

● Each player reveals Rsi masked by gli

○ Vi = Rsi gli

● V=g-m y-r Prod Vi should be gl

● Players can check that via a distributed Diffie-Hellman

○ Broadcast Ai=gri

■ A = Prod Ai = gr

○ Broadcast Ti = Ali and Ui = Vri

■ Prod Ti should be equal to Prod Ui (both glr)

■ pseudorandom values if test fails (under DDH)

Security Proof & Extensions

● Main proof in the paper is in the game-based definition of security
○ It is hard to forge DSA signatures even if controlling t players

● Simulation based proof is possible for our protocol if players prove knowledge

of their inputs to all MtA protocols
○ does not have to be range proofs necessarily

● MtA protocol is used as a black box
○ can use any, including the OT based one by Gilboa in the malicious adversary version

presented earlier

● Open source implementation by KZen Networks
○ https://github.com/KZen-networks/multi-party-ecdsa

