Forgery on Qameleon and SIV-TEM-PHOTON and SIV-Rijndael256

N.Datta, A.Jha, M.Nandi

Indian Statistical Institute, Kolkata, India

NIST Lightweight Workshop, 2019 Nov 05, 2019

M.Nandi (ISI, Kolkata)

Qameleon AE Mode

2

<ロ> (日) (日) (日) (日) (日)

Qameleon AE Mode

• Observation: The message length is not used in the final tweakable block cipher.

3

- 4 目 ト - 4 日 ト - 4 日 ト

Forgery on Qameleon

Forgery Description on Qameleon

- Query (N, A, $M_1 || M_1$) to the encryption oracle. Let $(C_1 || C_2, T)$ be the ciphertext and tag pair.
- Forge with (N, A, ϵ, T) , where ϵ denotes empty ciphertext.

- 4 目 ト - 4 日 ト - 4 日 ト

Forgery on Qameleon

Forgery Description on Qameleon

- Query (N, A, $M_1 || M_1$) to the encryption oracle. Let $(C_1 || C_2, T)$ be the ciphertext and tag pair.
- Forge with (N, A, ϵ, T) , where ϵ denotes empty ciphertext.

Simple Extension

- Take any message $M = M_1 \| \dots \| M_m$ with $M_1 \oplus \dots \oplus pad(M_m) = 0$ and $m < 2^{28}$.
- Query (N, A, M) to the encryption oracle. Let (C, T) be the ciphertext and tag pair.
- Forge with (N, A, ϵ, T) , where ϵ denotes empty ciphertext.

How the Forgery Works?

Exploiting improper tweak setting for tag generation

- The AD is same in both the cases.
- The checksum of *M* matches with the checksum for empty message, i.e. 0.
- The tweak value for tag generation block cipher call is same in both the cases, i.e. , 4||v||0 (since nonce is same and $|M|/128 < 2^{28}$).
- Hence, the forgery succeeds with probability 1.

Remark

- Forging is possible only with empty message.
- Message length is used for non-empty messages, and hence forging with non-empty message is not possible.
- Use the message length in the tweak of the final tweakable block cipher is a solution to this attack.

SIV-Rijndael256 AE Mode

< 3 >

-

SIV-Rijndael256 AE Mode

э

< 回 > < 三 > < 三 >

SIV-Rijndael256 AE Mode

Algorithm $\mathcal{F}_K(N, A, M)$

1. $S \leftarrow 0^n$	15. if $ M[m] = n/2$ then
2. $(A[1], \ldots, A[a]) \stackrel{n}{\leftarrow} A$	16. $S \leftarrow S \oplus (M[m] N)$
3. if $ A[a] < n$ then $d \leftarrow 1$ else $d \leftarrow 2$	17. $T \leftarrow E_K^4(S)$
4. $A[a] \leftarrow \operatorname{pad}_n(A[a])$	18. if $n/2 < M[m] < n$ then
5. for $i = 1$ to a do	19. $S \leftarrow S \oplus (\operatorname{pad}_n(M[m]))$
6. $S \leftarrow S \oplus A[i]$	20. $S \leftarrow E_K^d(S)$
7. $S \leftarrow E_K^0(S)$	21. $S \leftarrow S \oplus (0^{n/2} N)$
8. $(M[1], \ldots, M[m]) \stackrel{n}{\leftarrow} M$	22. $T \leftarrow E_K^5(S)$
9. for $i = 1$ to $m - 1$ do	23. if $ M[m] = n$ then
10. $S \leftarrow S \oplus M[i]$	24. $S \leftarrow S \oplus M[m]$
11. $S \leftarrow E_K^d(S)$	25. $S \leftarrow E_K^d(S)$
12. if $ M[m] < n/2$ then	26. $S \leftarrow S \oplus (0^{n/2} N)$
13. $S \leftarrow S \oplus (\text{pad}_{n/2}(M[m]) N)$	27. $T \leftarrow E_K^6(S)$
14. $T \leftarrow E_K^3(S)$	28. return T

 Observation: If |M| ≤ n/2, d is not used in the algorithm, two queries with same padded AD generates same (ciphertext-tag) pair.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Forgery on SIV-Rijndael256

Forgery Description on SIV-Rijndael256

- Construct A (|A| = 256) and A' (|A'| < 256) such that pad(A) = pad(A').
- Query (N, A, M), with $|M| \le 128$. Let the ciphertext be (C, T).
- Forge with (N, A', C, T).
- The forgery succeeds with probability 1.

- 4 週 ト - 4 三 ト - 4 三 ト

SIV-TEM-PHOTON AE Mode

3

(4 個) トイヨト イヨト

SIV-TEM-PHOTON AE Mode

Algorithm $\mathcal{F}_K(N, A, M)$

1. $S \leftarrow 0^n$	15. if $ M[m] = n$ then
2. $(A[1], \ldots, A[a]) \stackrel{n+t}{\leftarrow} A$	16. $S \leftarrow S \oplus M[m]$
3. if $ A[a] < n + t$ then $d \leftarrow 1$ else $d \leftarrow 2$	17. $T \leftarrow E_K^{4,N}(S)$
4. $A[a] \leftarrow \operatorname{pad}_{n+t}(A[a])$	18. if $n < M[m] < n + t$ then
5. for $i = 1$ to a do	19. $M[m] \leftarrow \operatorname{pad}_{n+t}(M[m])$
6. $S \leftarrow S \oplus \mathrm{msb}_n(A[i])$	20. $S \leftarrow S \oplus \mathrm{msb}_n(M[m])$
7. $S \leftarrow E_K^{0, \operatorname{lsb}_t(A[i])}(S)$	21. $S \leftarrow E_K^{d, \operatorname{lsb}_t(M[m])}(S)$
8. $(M[1], \ldots, M[m]) \stackrel{n+t}{\leftarrow} M$	22. $T \leftarrow E_K^{\delta,N}(S)$
9. for $i = 1$ to $m - 1$ do	23. if $ M[m] = n + t$ then
10. $S \leftarrow S \oplus \mathrm{msb}_n(M[i])$	24. $S \leftarrow S \oplus \mathrm{msb}_n(M[m])$
11. $S \leftarrow E_K^{d, \operatorname{Isb}_t(M[i])}(S)$	25. $S \leftarrow E_K^{d, \operatorname{lsb}_t(M[m])}(S)$
12. if $ M[m] < n$ then	26. $T \leftarrow E_K^{b,N}(S)$
13. $S \leftarrow S \oplus \text{pad}_n(M[m])$	27. return T
14. $T \leftarrow E_K^{3,N}(S)$	

• Observation: If $|M| \le n$, d is not used in the algorithm, two queries with same padded AD generates same (ciphertext-tag) pair.

イロン 不聞と 不同と 不同と

Forgery on SIV-TEM-PHOTON

Forgery Description on SIV-TEM-PHOTON

- Construct A (|A| = 384) and A' (|A'| < 384) such that pad(A) = pad(A').
- Query (N, A, M), with $|M| \le 256$. Let the ciphertext be (C, T).
- Forge with (N, A', C, T).
- The forgery succeeds with probability 1.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Separate the domains for full and partial AD in the AD processing phase.
- Already suggested by the designers in their revised document.

- 4 週 ト - 4 三 ト - 4 三 ト

- Separate the domains for full and partial AD in the AD processing phase.
- Already suggested by the designers in their revised document.

- Separate the domains for full and partial AD in the AD processing phase.
- Already suggested by the designers in their revised document.

Thank You ..!! Questions??

2