

High-Speed Hardware Architectures and Fair FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber

Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj

George Mason University USA

Co-Authors & Primary Designers

Viet Ba Dang NTRU, Saber

CRYSTALS-Kyber

Kamyar

Mohajerani

Round 3 Candidates & Focus of This Project

Public-Key and Ciphertext Sizes

4

Public Key (Bytes)

Our Major Contributions

- NTRU-HRSS & NTRU-HPS:
 <u>First pure hardware implementation</u>
- Saber:

The most-efficient hardware implementation in terms of both speed and area

• CRYSTALS-Kyber:

The most-efficient high-speed implementation in terms of speed and latency x area

 All 9 Round-3 KEMs: <u>Ranking</u> and <u>speed vs. area graphs</u> based on the most-efficient hardware implementations

Benchmarking Methodology

Design Approach

- HW: VHDL, Verilog, Chisel
- Industry standard
- Highest-performance
- Best trade-offs between speed vs. area
- Long development time

High-Level Synthesis (HLS)

- HW: C, C++, System C
- Short development time
- Lower performance in terms of speed and/or area (for PQC, some reports showing 2-4 orders of magnitude difference)

Software/Hardware Co-Design (SW/HW)

- SW: C, assembly
- HW RTL: VHDL, Verilog, Chisel
- HW HLS: C, C++, System C
- Short development time
- Communication overhead
- Strong dependence on a partitioning scheme
- Inconclusive results

Operations Supported by Each Core

Each core can operate with its own maximum clock frequency

Parameter Sets Supported by Each Core

Design Space Exploration

Lightweight	Balanced	High-speed
<u>Primary Metrics:</u> Area Power	Primary Metrics: Latency · Area	<u>Primary Metrics:</u> Latency #Operations_per_s
<u>Secondary Metrics:</u> Latency #Operations_per_s	#Operations_per_s / Area	<u>Secondary Metrics:</u> Area Power

Latency vs. #Operations per seconds

#Operations per second: x 2 (doubles)Latency:x 1 (stays the same)

Application with strict latency requirements:

Establishing secure communication between two autonomous vehicles Application with strict #operations per second requirements: High-traffic servers for popular internet security protocols

Platforms:

Artix-7: 134,600 LUTs

Zynq UltraScale+: 230,400 LUTs Tools: XC7A200T-3, 365 BRAMs ZU7EV-3, 312 BRAMs 28 nm technology 740 DSPs 16 nm technology 1,728 DSPs

Vivado WebPack 2020.1 (free)

In PQC, the use of LUTs typically most limiting \Rightarrow Area represented by #LUTs All results reported after placing & routing

- All designs started about 1 year ago
- Two designers working very closely with each other
- All design decisions made independently from other groups
- No use of any vendor-specific intellectual property (IP) cores
- No use of any code developed by other groups
- Portability to other FPGA platforms and ASICs
- Freedom to use any design flows (including open-source)
- Complete documentation
- Publishing source-code after a publication in a journal or a conference with proceedings

Design Choices

Choice of a Polynomial Multiplier

CRYSTALS-Kyber	NTRU	Saber
k x NTT-based	Toom-Cook	Schoolbook
k= 2, 3, 4 for Security Levels 1, 3, 5	Toom-3 + Karatsuba Based on 15 • d DSP units	 unrolling factor (#coefficients of B multiplied by A)
+ Karatsuba	<mark>d</mark> = 2, <u>3</u>	<mark>u= <u>1</u>, 2, 4</mark>
during pointwise multiplication	Schoolbook when one polynomial ternary, i.e., w/ coefficients {-1, 0, 1}	

Saber: Block Diagram

Saber Encapsulation: Scheduling Diagram

Results

Ranking of Kyber, NTRU, & Saber: Assumptions

- 1 operation and 1 security level supported by each core
- 9 cores per algorithm

Ranking of 3 KEM Finalists on Artix-7

Key Generation									
Level 1			Level 3			Level 5			
Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	
Saber	9.5	1.00	Kyber	12.0	1.00	Kyber	16.2	1.00	
Kyber	10.0	1.05	Saber	15.9	1.33	Saber	28.8	1.78	
NTRU-HRSS	323.8	34.08	NTRU-HPS	516.6	43.05				
NTRU-HPS	370.6	39.01							

Encapsulation									
Level 1			Level 3			Level 5			
Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	
Saber	12.7	1.00	Kyber	17.0	1.00	Kyber	21.7	1.00	
NTRU-HRSS	13.9	1.09	Saber	22.0	1.29	Saber	34.5	1.59	
Kyber	14.7	1.16	NTRU-HPS	35.2	2.07				
NTRU-HPS	28.4	2.24							

Decapsulation									
Level 1			Level 3			Level 5			
Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	Algorithm	Time [us]	Ratio	
Saber	16.4	1.00	Kyber	22.2	1.00	Kyber	26.4	1.00	
Kyber	20.5	1.25	Saber	27.5	1.24	Saber	41.9	1.59	
NTRU-HPS	47.0	2.87	NTRU-HPS	63.8	2.87				
NTRU-HRSS	55.2	3.37							

Why is Kyber Better Than Saber at Levels 3 & 5?

- In Kyber, the NTT-based multiplier is quite small and sequential
- In Saber, the schoolbook multiplier is big and parallel
- For Kyber, it is justifiable to use **2**, **3**, and **4** multipliers at the security levels 1, 3, and 5, respectively
- For Saber, it is not justifiable to use a bigger unrolling factor for higher security levels

Latency vs. Area: Assumptions

- 3 operations and 1 security level supported by each core
- 3 cores per algorithm

Level 1: Key Generation on Artix-7

Level 1 - Key Generation

Level 1: Encapsulation on Artix-7

Level 1 - Encapsulation

Level 1: Decapsulation on Artix-7

Level 1 - Decapsulation

Level 3: Key Generation on Zynq UltraScale+

Level 3: Encapsulation on Zynq UltraScale+

Level 3 - Encapsulation

Level 3: Decapsulation on Zynq UltraScale+

Comparison with Previous Work

Previous Work on CRYSTALS-Kyber

CRYSTALS-Kyber-Tsinghua:

"A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA"

by Yufei Xing and Shuguo Li

Institute of Microelectronics, Tsinghua University, Beijing, China

TCHES, vol. 2021, no. 2, Feb. 2021

CRYSTALS-Kyber: Comparison with Previous Work

Previous Work on Saber

Saber-U.Birmingham:

"High-speed Instruction-set Coprocessor for Lattice-based Key Encapsulation Mechanism: Saber in Hardware,"

Sujoy Sinha Roy and Andrea Basso

University of Birmingham, UK

TCHES, vol. 2020, no. 4, Aug. 2020

Saber-Tsinghua:

"LWRpro: An Energy-Efficient Configurable Crypto-Processor for Module-LWR," by Yihong Zhu¹, Min Zhu², Bohan Yang¹, Wenping Zhu¹, Chenchen Deng¹, Chen Chen¹, Shaojun Wei¹, and Leibo Liu¹

¹ Tsinghua University, Beijing, China

² Wuxi Micro Innovation Integrated Circuit Design Company Ltd., Wuxi, China IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 68, no. 3, Mar. 2021

Saber: Comparison with Previous Work

Conclusions

- New hardware implementations of 3 lattice-based finalists supporting fair rankings
- Among the 4 finalist KEMs, CRYSTALS-Kyber and Saber significantly outperform NTRU and Classic McEliece for at least a subset of all operations
- The differences between CRYSTALS-Kyber and Saber are relatively small, with
 - Saber slightly faster at Security Level 1
 - CRYSTALS-Kyber faster at Security Levels 3 & 5
 - CRYSTALS-Kyber smaller than Saber in terms of the #LUTs
- Four finalist KEMs outperform all alternate KEMs

Cryptographic Engineering Research Group CERG: http://cryptography.gmu.edu ATHENa: http://cryptography.gmu.edu/athena Choose: PQC