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Round 3 Candidates & Focus of This Project
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Our Major Contributions  

• NTRU-HRSS & NTRU-HPS:
First pure hardware implementation

• Saber:
The most-efficient hardware implementation in terms of both speed and area

• CRYSTALS-Kyber:
The most-efficient high-speed implementation in terms of speed and latency x area

• All 9 Round-3 KEMs:
Ranking and speed vs. area graphs 
based on the most-efficient hardware implementations
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Benchmarking 
Methodology
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Design Approach
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Register-Transfer
Level
(RTL)

High-Level 
Synthesis

(HLS)

Software/Hardware
Co-Design
(SW/HW)

• HW: VHDL, Verilog, Chisel

• Industry standard
• Highest-performance
• Best trade-offs between

speed vs. area

• Long development time

• HW: C, C++, System C

• Short development time

• Lower performance
in terms of speed and/or area
(for PQC, some reports showing
2-4 orders of magnitude 
difference)

• SW:  C, assembly
• HW RTL: VHDL, Verilog, Chisel
• HW HLS: C, C++, System C

• Short development time

• Communication overhead
• Strong dependence on 

a partitioning scheme
• Inconclusive results



Operations Supported by Each Core
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Encapsulation
& Decapsulation Encapsulation,

Decapsulation,
& Key generation 

Encapsulation

Decapsulation

Key Generation 

vs.

Demonstrate potential for resource sharing

Key Generation 

Key Generation
& Decapsulation 

Encapsulation

vs. vs.

Demonstrate
Area of Each 

Operation

Each core can operate with its own maximum clock frequency



Parameter Sets Supported by Each Core

Parameter 
Set 1 Parameter 

Set 2
Parameter 

Set 3

Parameter 
Sets

1, 2, & 3vs.

Source
Code

Source
Code

Choice at the time 
of synthesis 

Choice at run time 
Multiple result sets with minimal effort

1 area, 1 clock frequency 93 areas, 3 clock frequencies



Design Space Exploration
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Lightweight High-speedBalanced

Primary Metrics:
Area
Power

Secondary Metrics:
Latency
#Operations_per_s

Secondary Metrics:
Area
Power

Primary Metrics:
Latency
#Operations_per_s

Primary Metrics:

Latency · Area
#Operations_per_s / Area



Latency vs. #Operations per seconds
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Core Core Core

#Operations per second:  x 2 (doubles)
Latency:                              x 1 (stays the same)

Application with strict latency requirements:

Application with strict #operations per second requirements:
Establishing secure communication between two autonomous vehicles

High-traffic servers for popular internet security protocols



FPGA Platforms & Tools
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Platforms:
Artix-7:          XC7A200T-3,    28 nm technology
134,600 LUTs 365 BRAMs 740 DSPs

Zynq UltraScale+:         ZU7EV-3,       16 nm technology
230,400 LUTs 312 BRAMs 1,728 DSPs
Tools:

Vivado WebPack 2020.1 (free)

All results reported after placing & routing
In PQC, the use of LUTs typically most limiting  ⇒ Area represented by #LUTs



General Approach
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• All designs started about 1 year ago

• Two designers working very closely with each other

• All design decisions made independently from other groups

• No use of any vendor-specific intellectual property (IP) cores

• No use of any code developed by other groups

• Portability to other FPGA platforms and ASICs

• Freedom to use any design flows (including open-source) 

• Complete documentation

• Publishing source-code after a publication in a journal or a conference with proceedings



Design Choices
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Choice of a Polynomial Multiplier
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CRYSTALS-Kyber SaberNTRU

k x NTT-based SchoolbookToom-Cook
k= 2, 3, 4

for Security Levels 1, 3, 5
Toom-3 + Karatsuba u – unrolling factor

(#coefficients of B multiplied by A)Based on 15･d DSP units

Schoolbook
when one polynomial ternary,
i.e., w/ coefficients {-1, 0, 1}

d= 2, 3 u= 1, 2, 4+ Karatsuba
during pointwise 

multiplication 



Saber: Block Diagram
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Saber Encapsulation: Scheduling Diagram
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Results
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Ranking of Kyber, NTRU, & Saber: Assumptions
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• 1 operation and 1 security level supported by each core
• 9 cores per algorithm 

Encapsulation

Decapsulation

Key Generation 

Parameter 
Set 1 Parameter 

Set 2
Parameter 

Set 3

Source
Code

Choice at the time 
of synthesis 
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Ranking of 3 KEM Finalists on Artix-718 High-Speed Hardware Architectures and Fair FPGA Benchmarking

Table 13: Artix-7 results for designs proposed and documented in this work
Key Generation

Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 9.5 1.00 Kyber 12.0 1.00 Kyber 16.2 1.00
Kyber 10.0 1.05 Saber 15.9 1.33 Saber 28.8 1.78
NTRU-HRSS 323.8 34.08 NTRU-HPS 516.6 43.05
NTRU-HPS 370.6 39.01

Encapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 12.7 1.00 Kyber 17.0 1.00 Kyber 21.7 1.00
NTRU-HRSS 13.9 1.09 Saber 22.0 1.29 Saber 34.5 1.59
Kyber 14.7 1.16 NTRU-HPS 35.2 2.07
NTRU-HPS 28.4 2.24

Decapsulation
Level 1 Level 3 Level 5

Algorithm Time [us] Ratio Algorithm Time [us] Ratio Algorithm Time [us] Ratio
Saber 16.4 1.00 Kyber 22.2 1.00 Kyber 26.4 1.00
Kyber 20.5 1.25 Saber 27.5 1.24 Saber 41.9 1.59
NTRU-HPS 47.0 2.87 NTRU-HPS 63.8 2.87
NTRU-HRSS 55.2 3.37

four finalists – Saber, Kyber, NTRU, and Classic McEliece – clearly outperform three
alternates – FrodoKEM, BIKE, and HQC. Based on the data from Table 4, we can clearly
establish that SIKE is much slower than the four finalists as well. Among the finalists,
Saber and Kyber perform overall much better than NTRU and Classic McEliece.

The results for the security level 5 are shown in Figs. 6–8. The majority of Round 3
candidates either do not have implementations, or these implementations have exceeded
the resources of Artix-7 FPGAs. Kyber and Saber are in a virtual tie, with Kyber slightly
ahead for all operations.

For the security level 3, we present results for both Artix-7 (in Figs 9–11) and Zynq
UltraScale+ (in Figs 12–14). In the case of Artix-7, results are reported for all four finalists
and two alternates (FrodoKEM and BIKE). In the case of Zynq UltraScale+, the graphs
cover three lattice-based finalists and one alternate candidate, NTRU Prime. For all
operations, at the security level 3, Kyber outperforms Saber by a very small factor in terms
of both speed and area. NTRU (represented at this level only by NTRU-HPS) is more than
an order of magnitude slower for key generation and 2-3 times slower for encapsulation
and decapsulation. Classic McEliece slightly exceeds the speed of NTRU for encapsulation,
but lags behind by almost an order of magnitude for decapsulation and two orders of
magnitude for key generation. FrodoKEM and BIKE are orders of magnitude slower than
finalists for encapsulation and decapsulation, and better only than Classic McEliece for
key generation. The results obtained using Zynq UltraScale+ (or UltraScale+) seem to
indicate that Streamlined NTRU Prime lags at least two orders of magnitude behind the
best two candidates for each major operation. It is possible, however, that these results
are sub-optimal and biased by the fact that the designer’s primary goal was small resource
utilization. Three Saber designs are comparable in terms of speed and resource utilization.
However, the design proposed and documented in this work is clearly the best in terms of
both the speed and the usage of LUTs.

In Tables 13 and 14, the exact numerical results are presented for the execution times of
implementations proposed and described in this paper. These results clearly indicate that
NTRU is between 30 and 50 times slower than Saber for the key generation at both level 1
and level 3. NTRU is also about 2-4 times slower than Saber for decapsulation. Only for
encapsulation, the performance of NTRU becomes comparable. Kyber is between 5% and



Why is Kyber Better Than Saber at Levels 3 & 5?
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• In Kyber, the NTT-based multiplier is quite small and sequential

• In Saber, the schoolbook multiplier is big and parallel

• For Kyber, it is justifiable to use 2, 3, and 4 multipliers 

at the security levels 1, 3, and 5, respectively

• For Saber, it is not justifiable to use a bigger unrolling factor for 

higher security levels



Latency vs. Area: Assumptions
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• 3 operations and 1 security level supported by each core
• 3 cores per algorithm 

Parameter 
Set 1 Parameter 

Set 2
Parameter 

Set 3

Source
Code

Choice at the time 
of synthesis 

Encapsulation,
Decapsulation,

& Key generation 
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Level 1: Key Generation on Artix-7
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Level 1: Encapsulation on Artix-7
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Level 1: Decapsulation on Artix-7
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Level 3: Key Generation on Zynq UltraScale+
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Level 3: Encapsulation on Zynq UltraScale+
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Level 3: Decapsulation on Zynq UltraScale+
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Comparison with Previous 
Work
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Previous Work on CRYSTALS-Kyber
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CRYSTALS-Kyber-Tsinghua:

“A Compact Hardware Implementation of CCA-Secure Key Exchange Mechanism 

CRYSTALS-KYBER on FPGA”

by Yufei Xing and Shuguo Li

Institute of Microelectronics, Tsinghua University, Beijing, China

TCHES, vol. 2021, no. 2, Feb. 2021



CRYSTALS-Kyber: Comparison with Previous Work
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Previous Work on Saber
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Saber-U.Birmingham:
“High-speed Instruction-set Coprocessor for Lattice-based Key Encapsulation Mechanism: 
Saber in Hardware,”
Sujoy Sinha Roy and Andrea Basso
University of Birmingham, UK
TCHES, vol. 2020, no. 4, Aug. 2020

Saber-Tsinghua:
“LWRpro: An Energy-Efficient Configurable Crypto-Processor for Module-LWR,”
by Yihong Zhu1, Min Zhu2, Bohan Yang1, Wenping Zhu1, Chenchen Deng1, 
Chen Chen1, Shaojun Wei1, and Leibo Liu1

1 Tsinghua University, Beijing, China
2 Wuxi Micro Innovation Integrated Circuit Design Company Ltd., Wuxi, China
IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 68, no. 3, Mar. 2021



Saber: Comparison with Previous Work
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Conclusions
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Conclusions
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• New hardware implementations of 3 lattice-based finalists supporting fair rankings

• Among the 4 finalist KEMs, CRYSTALS-Kyber and Saber

significantly outperform NTRU and Classic McEliece for at least a subset of all operations

• The differences between CRYSTALS-Kyber and Saber are relatively small, with

§ Saber slightly faster at Security Level 1

§ CRYSTALS-Kyber faster at Security Levels 3 & 5

§ CRYSTALS-Kyber smaller than Saber in terms of the #LUTs

• Four finalist KEMs outperform all alternate KEMs



Q&A
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CERG: http://cryptography.gmu.edu
ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

Choose: PQC


