
FrodoKEM
A simple and conservative KEM from generic lattices

Erdem Alkim Joppe W. Bos Léo Ducas Patrick Longa Ilya Mironov

Michael Naehrig Valeria Nikolaenko Chris Peikert Ananth Raghunathan Douglas Stebila

FrodoKEM Recap (part I)

FrodoKEM is conservative yet practical

❑ Plain LWE: generic, algebraically unstructured lattices
• Minimizes potential attack surface: no algebraic ring structure

❑ Cautious parameterization: ‘medium-sized’ errors conforming to a
worst-case/average-case reduction
• Narrower errors ⇒ smaller parameters, better efficiency

❑ Concrete parameters chosen according to ‘core-SVP’ methodology
• Lower-bound the first-order exponential time and space of SVP

1/11

FrodoKEM has a simple design and implementation

❑ Matrix-vector products over ℤ𝑞
𝑛 with a power-of-2 modulus 𝑞

❑ Straightforward error sampling: approximation to rounded Gaussian
E.g., using inversion sampling:

• Table 𝑇𝒳 stores (𝑠 + 1) integers related to discrete cumulative distribution function

• Given a random value 𝑟, determine smallest index 𝑖 such that 𝑟 ≤ 𝑇𝒳 𝑖

• Output (−1)𝑏𝑖 for a random bit 𝑏

❑ x64 implementation consists of ~350 lines of C code
(+ existing symmetric primitives)

❑ No use of hand-written assembly: additional implementation only
differs by use of vector intrinsics for computing AS + E and S'A + E'

FrodoKEM Recap (part II)

2/11

❑ Two (2) variants
• Uses either AES-128 or SHAKE128 for the generation of a public matrix A

❑ Six (6) parameter sets in total:

• FrodoKEM-640-XXX: targets security level 1 (≥ AES-128)

• FrodoKEM-976-XXX: targets security level 3 (≥ AES-192)

• FrodoKEM-1344-XXX: targets security level 5 (≥ AES-256)

Dimension 𝑛 ∈ 640, 976, 1344 , XXX ∈ AES, SHAKE

FrodoKEM Recap (part III)

3/11

List of updates for Round3

4/11

KEM decapsulation in constant-time
A cautionary tale

❑ Encryption check during decapsulation is arguably the most fragile
point of failure in the KEM structure
• Failures are not detected by ‘positive’ tests

❑ Guo et al., CRYPTO 2020: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and
its application on FrodoKEM
• Exploits timing leakage during encryption check

5/11

int8_t ct_verify(const uint16_t *a, const uint16_t *b, size_t len)

{ // Returns 0 if the byte arrays a and b are equal, -1 otherwise.

uint16_t r = 0;

for (size_t i = 0; i < len; i++)

r |= a[i] ^ b[i];

return (int8_t)(-(int16_t)r >> 15);

}

r = (-(int16_t)(r >> 1) | -(int16_t)(r & 1)) >> 15;

❑ Writing constant-time code can be tricky
• “Traditional” testing is insufficient

KEM decapsulation in constant-time
A cautionary tale

6/11

What we have added to the code:

❑ New ‘negative’ tests against changes in ciphertext

❑ Macros that use Valgrind to check for non-constant time code
• Selection is done at compilation time

❑ Tests using clang’s address sanitizer and undefined behavior sanitizer

❑ All these tests are now run automatically with GitHub Actions

https://github.com/microsoft/PQCrypto-LWEKE

KEM decapsulation in constant-time
A cautionary tale

7/11

https://github.com/microsoft/PQCrypto-LWEKE

Recent developments (part I)

❑ FrodoKEM, at levels 3 and 5, is recommended by the German Federal
Office for Information Security (BSI) as cryptographically suitable for
long-term confidentiality protection.

“BSI – Technical Guideline (Cryptographic Mechanisms: Recommendations
and Key Lengths)”, BSI TR-02102-1, March 2021:

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Te
chGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=10

❑ We wrote a Python3 reference implementation of FrodoKEM
https://github.com/microsoft/PQCrypto-LWEKE

8/11

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=10
https://github.com/microsoft/PQCrypto-LWEKE

❑ M. Polubelova and S. Zanella-Beguelin (2021): Formally verified
implementation of FrodoKEM (Round 3) https://github.com/project-
everest/hacl-star/tree/master/code/frodo
• Part of HACL*, a formally verified cryptographic library written in F*

❑ Howe et al. 2021 (JCEN): Exploring Parallelism to Improve the
Performance of FrodoKEM in Hardware https://eprint.iacr.org/2021/155
• Shows a significant speedup (~15x) on FPGA using Trivium for the generation of the

public matrix A

• Shows that FrodoKEM incurs a negligible overhead when adding arithmetic masking to
protect decapsulation against first-order side-channel attacks

Recent developments (part II)

9/11

https://github.com/project-everest/hacl-star/tree/master/code/frodo
https://eprint.iacr.org/2021/155

❑ Bos et al. 2021: The Matrix Reloaded: Multiplication Strategies in
FrodoKEM https://eprint.iacr.org/2021/711
• Faster matrix multiplication using a row-wise blocking and packing (RWCF) approach

• Speedups of 12%, 14% and 16% are achieved for FrodoKEM-640-AES, FrodoKEM-976-AES
and FrodoKEM-1344-AES, resp.

Recent developments (part III)

10/11

https://eprint.iacr.org/2021/711

Performance results

❑ Performance (in 103 cycles) on an x64 AMD Ryzen 9 3900XT @3.8GHz
(Bos et al. 2021)

E.g., one full FrodoKEM execution (at level 1) is completed in 0.79 msec.,
____Encaps + Decaps runs in 0.55 msec.

Parameter set Level keygen encaps decaps

FrodoKEM-640-AES 1 903 1068 1025

FrodoKEM-976-AES 3 1712 1955 1850

FrodoKEM-1344-AES 5 3017 3363 3221

11/11

FrodoKEM
A simple and conservative KEM from generic lattices

Erdem Alkim Joppe W. Bos Léo Ducas Patrick Longa Ilya Mironov

Michael Naehrig Valeria Nikolaenko Chris Peikert Ananth Raghunathan Douglas Stebila

https://frodokem.org/

https://frodokem.org/

