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FrodoKEM Recap (part I)

FrodoKEM is conservative yet practical

❑ Plain LWE: generic, algebraically unstructured lattices
• Minimizes potential attack surface: no algebraic ring structure

❑ Cautious parameterization: ‘medium-sized’ errors conforming to a 
worst-case/average-case reduction
• Narrower errors ⇒ smaller parameters, better efficiency 

❑ Concrete parameters chosen according to ‘core-SVP’ methodology 
• Lower-bound the first-order exponential time and space of SVP 
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FrodoKEM has a simple design and implementation

❑ Matrix-vector products over ℤ𝑞
𝑛 with a power-of-2 modulus 𝑞

❑ Straightforward error sampling:  approximation to rounded Gaussian
E.g., using inversion sampling:

• Table 𝑇𝒳 stores (𝑠 + 1) integers related to discrete cumulative distribution function

• Given a random value 𝑟, determine smallest index 𝑖 such that 𝑟 ≤ 𝑇𝒳 𝑖

• Output (−1)𝑏𝑖 for a random bit 𝑏

❑ x64 implementation consists of ~350 lines of C code                                
(+ existing symmetric primitives)

❑ No use of hand-written assembly:  additional implementation only 
differs by use of vector intrinsics for computing AS + E and S'A + E'

FrodoKEM Recap (part II)
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❑ Two (2) variants
• Uses either AES-128 or SHAKE128 for the generation of a public matrix A

❑ Six (6) parameter sets in total:

• FrodoKEM-640-XXX:    targets security level 1 (≥ AES-128)

• FrodoKEM-976-XXX:    targets security level 3 (≥ AES-192)

• FrodoKEM-1344-XXX:  targets security level 5 (≥ AES-256)

Dimension 𝑛 ∈ 640, 976, 1344 ,  XXX ∈ AES, SHAKE

FrodoKEM Recap (part III)
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List of updates for Round3
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KEM decapsulation in constant-time
A cautionary tale

❑ Encryption check during decapsulation is arguably the most fragile 
point of failure in the KEM structure
• Failures are not detected by ‘positive’ tests

❑ Guo et al., CRYPTO 2020:  A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and 
its application on FrodoKEM
• Exploits timing leakage during encryption check
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int8_t ct_verify(const uint16_t *a, const uint16_t *b, size_t len) 

{ // Returns 0 if the byte arrays a and b are equal, -1 otherwise.

uint16_t r = 0;

for (size_t i = 0; i < len; i++)

r |= a[i] ^ b[i];

return (int8_t)(-(int16_t)r >> 15);

}

r = (-(int16_t)(r >> 1) | -(int16_t)(r & 1)) >> 15;

❑ Writing constant-time code can be tricky
• “Traditional” testing is insufficient

KEM decapsulation in constant-time
A cautionary tale
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What we have added to the code:

❑ New ‘negative’ tests against changes in ciphertext   

❑ Macros that use Valgrind to check for non-constant time code
• Selection is done at compilation time

❑ Tests using clang’s address sanitizer and undefined behavior sanitizer

❑ All these tests are now run automatically with GitHub Actions

https://github.com/microsoft/PQCrypto-LWEKE

KEM decapsulation in constant-time
A cautionary tale
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Recent developments (part I)

❑ FrodoKEM, at levels 3 and 5, is recommended by the German Federal 
Office for Information Security (BSI) as cryptographically suitable for 
long-term confidentiality protection.

“BSI – Technical Guideline (Cryptographic Mechanisms: Recommendations 
and Key Lengths)”, BSI TR-02102-1, March 2021: 

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Te
chGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=10

❑ We wrote a Python3 reference implementation of FrodoKEM
https://github.com/microsoft/PQCrypto-LWEKE
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❑ M. Polubelova and S. Zanella-Beguelin (2021): Formally verified 
implementation of FrodoKEM (Round 3) https://github.com/project-
everest/hacl-star/tree/master/code/frodo
• Part of HACL*, a formally verified cryptographic library written in F*

❑ Howe et al. 2021 (JCEN): Exploring Parallelism to Improve the 
Performance of FrodoKEM in Hardware  https://eprint.iacr.org/2021/155
• Shows a significant speedup (~15x) on FPGA using Trivium for the generation of the 

public matrix A

• Shows that FrodoKEM incurs a negligible overhead when adding arithmetic masking to 
protect decapsulation against first-order side-channel attacks   

Recent developments (part II)

9/11

https://github.com/project-everest/hacl-star/tree/master/code/frodo
https://eprint.iacr.org/2021/155


❑ Bos et al. 2021: The Matrix Reloaded: Multiplication Strategies in 
FrodoKEM https://eprint.iacr.org/2021/711
• Faster matrix multiplication using a row-wise blocking and packing (RWCF) approach

• Speedups of 12%, 14% and 16% are achieved for FrodoKEM-640-AES, FrodoKEM-976-AES 
and FrodoKEM-1344-AES, resp.

Recent developments (part III)
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Performance results

❑ Performance (in 103 cycles) on an x64 AMD Ryzen 9 3900XT @3.8GHz 
(Bos et al. 2021)

E.g., one full FrodoKEM execution (at level 1) is completed in 0.79 msec., 
____Encaps + Decaps runs in 0.55 msec.

Parameter set Level keygen encaps decaps

FrodoKEM-640-AES 1 903 1068 1025

FrodoKEM-976-AES 3 1712 1955 1850

FrodoKEM-1344-AES 5 3017 3363 3221

11/11



FrodoKEM
A simple and conservative KEM from generic lattices

Erdem Alkim      Joppe W. Bos      Léo Ducas      Patrick Longa Ilya Mironov

Michael Naehrig      Valeria Nikolaenko Chris Peikert      Ananth Raghunathan      Douglas Stebila

https://frodokem.org/

https://frodokem.org/

