Lightweight Cryptography Workshop 2019

Hardware Implementations of NIST Lightweight Cryptographic Candidates: A First Look

Behnaz Rezvani William Diehl

Bradley Dept. of Electrical and Computer Eng. Virginia Tech Blacksburg, Virginia

November 5, 2019

- Introduction
- Rationale of selecting Ciphers
- FPGA Implementations
 - SpoC
 - Spook
 - GIFT-COFB
 - CAESAR LW API
- Results
- Conclusions

- Devices in IoT are vulnerable to theft of privacy information and are subject to potentially more destructive attacks
- Conventional methods of security provisions:
 - Encryption/Decryption Confidentiality
 - MAC Authentication
 - Hash Data integrity
- AEAD combines confidentiality, data integrity, and authentication into a single algorithm
 - Savings in cost and performance
 - Good for lightweight applications
 - But, more complex security analysis

• Functionality: AEAD (34) AEAD + Hash (22)

- Block cipher or permutation-based (51) vs. stream cipher and others (5)
 - Permutation-based (26)
- Permutation structures: SPN (37), Feistel (10), 3D state (4), Misty (1), LS-design (1)

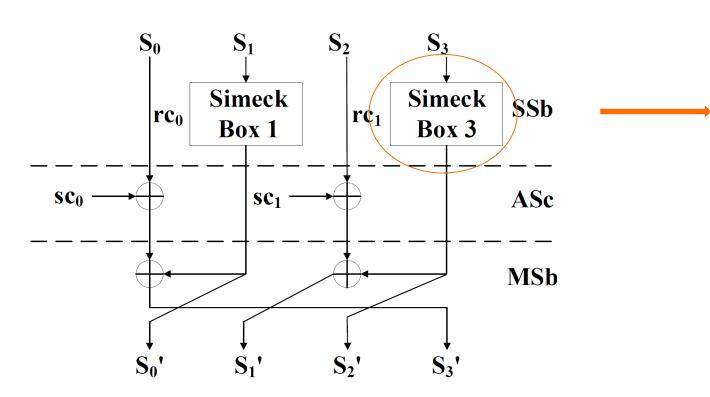
```
Non-linearity: S-box: 4-to-2-bit (1) 3-bit (1), 4-bit (22), 5-bit (5), 8-bit (12), 9-bit (1)
AND (9)
ARX* (6)
```

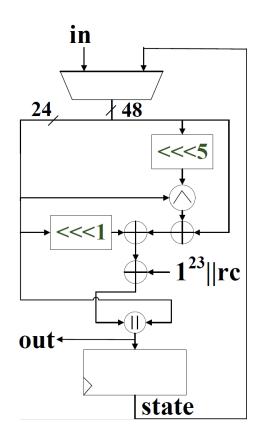

Rationale of Selection

- Different structures:
 - Block-based: GIFT-COFB
 - Sponge-based: SpoC, Spook
- Different permutation designs:
 - sLiSCP-light permutation: SpoC
 - LS-design: Spook
 - SPN: GIFT-COFB
- Different types of confusion:
 - S-box: Spook, GIFT-COFB
 - AND: SpoC
- Tweakable Block Cipher:
 - Spook

sLiSCP-light

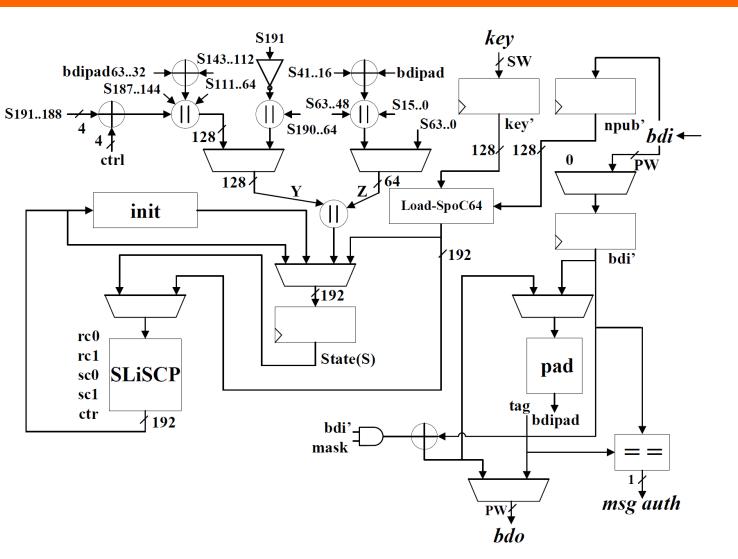
- SpoC mode of operation:
 - Sponge with a masked capacity
 - Higher security
 - Larger rate value per permutation call


 M_{m-1} A_{a-1} N_1 c=128 $f(N_0,K)$ tag Perm Perm Perm Perm **b=192** 64 r=64 **M**_{m-1} ctrl_{PT} ctrl_{TAG} ctrl_{AD}



SpoC: sLiSCP-light[192]

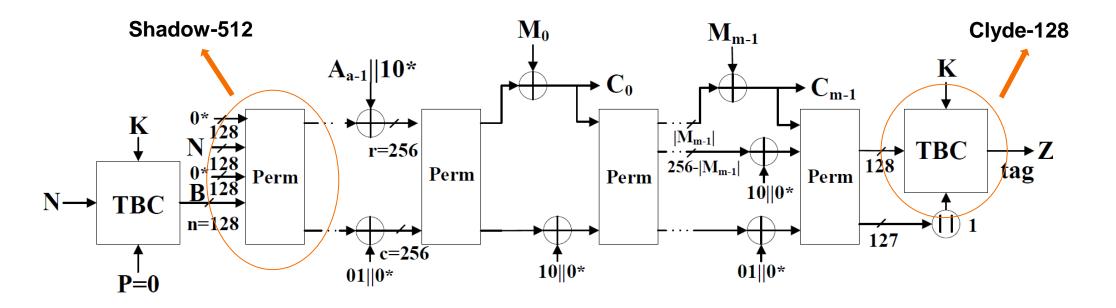
- Combination of a type II generalized Feistel structure (GFS) and Simeck box
- 3 transformations in each step (18 steps)
 - SubstituteSubblocks (SSb) (6 rounds)
 - AddStep constants (ASc)
 - MixSubblocks (MSb)



SpoC Implementation

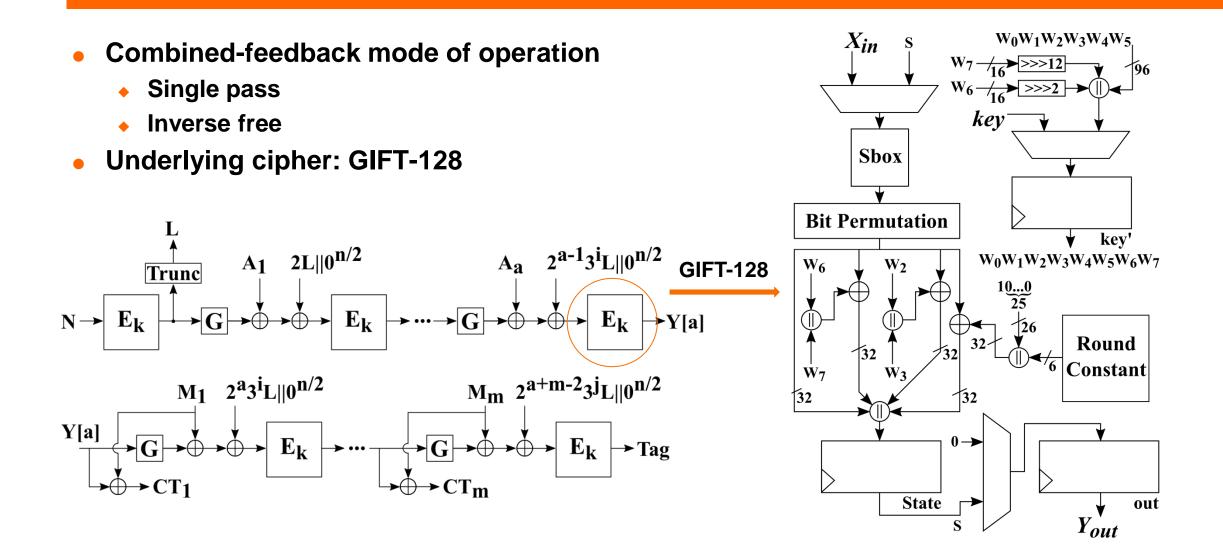
- 1 round of the SSb: 1 clock cycle
 - 108 clock cycles per permutation
- Initialization and Tag gen.: 219 CC
- Every block of AD: 109 CC
- Every block of M: 111 CC

- Requires 10^{*} padding
- Truncate the output (|CT|=|PT|)

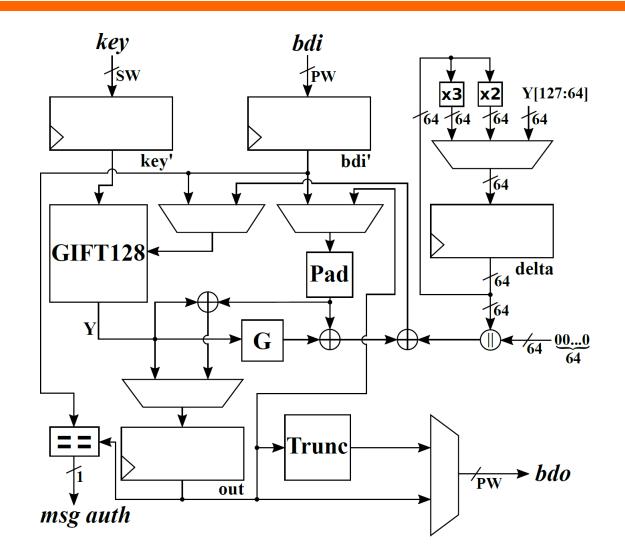


- Primary member achieves Ciphertext Integrity and Misuse with Leakage in encryption and decryption (CIML2), which is an extension of ciphertext integrity in the presence of nonce misuse and side-channel leakages
- Single one pass (S1P) mode of operation
- Clyde-128: A tweakable LS-design (L-box, S-box)
- Shadow-512: A multiple LS-design (L-box, S-box, diffusion layer)

Spook Implementation

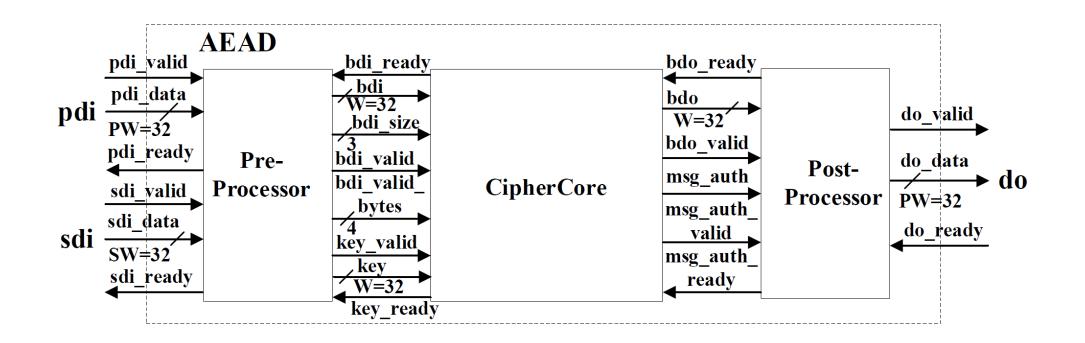

- 1 round of TBC: 1 clock cycle
 - 12 clock cycles per TBC
 - 144 clock cycles per permutation
- Initialization and Tag gen.: 169 CC
- Every block of AD: 145 CC
- Every block of M: 145 CC
- L-box and S-box are shared
- Requires 10^{*} padding
- Truncate the output (|CT|=|PT|)

GIFT-COFB Construction



GIFT-COFB Implementation

- 1 round: 1 clock cycle
 - 40 clock cycles per GIFT cipher
- Initialization and Tag gen.: 112 CC
- Every block of AD: 50 CC
- Every block of M: 53 CC
- Requires 10^{*} padding
- Truncate the output (|CT|=|PT|)



CAESAR LW API

- CAESAR LW developer's package:
 - Input processor (Pre-Processor)
 - Output processor (Post-Processor)
 - Designer's cipher (CipherCore)

Implementation Setup

• Methodology

→ RTL

- FPGA platform
- Interface
- Operation tool
- Optimization tool
- Goal of optimization
- Test vector generator
- Verification hardware

- Artix-7
- **CAESAR** hardware API (LW developer's package)
- Xilinx Vivado 2018.3
 - Minerva automated hardware optimization tool
 - Throughput to area (TPA) ratio
 - aeadtvgen in the developer's package
 - **FOBOS**

• All ciphers are implemented in basic iterative (round-based) architecture.

Benchmarking Results

- <u>Latency</u>: # of clock cycles to process one block of PT from start to end
- <u>Throughput</u>: (Max Freq) x (Bits/Block)/(Cycles/Block)
- <u>SpoC</u> has the highest frequency and smallest area.
- <u>GIFT-COFB</u> has the highest TP and TPA and the smallest latency.
- <u>Spook</u> has largest area but higher TP than <u>SpoC</u>.

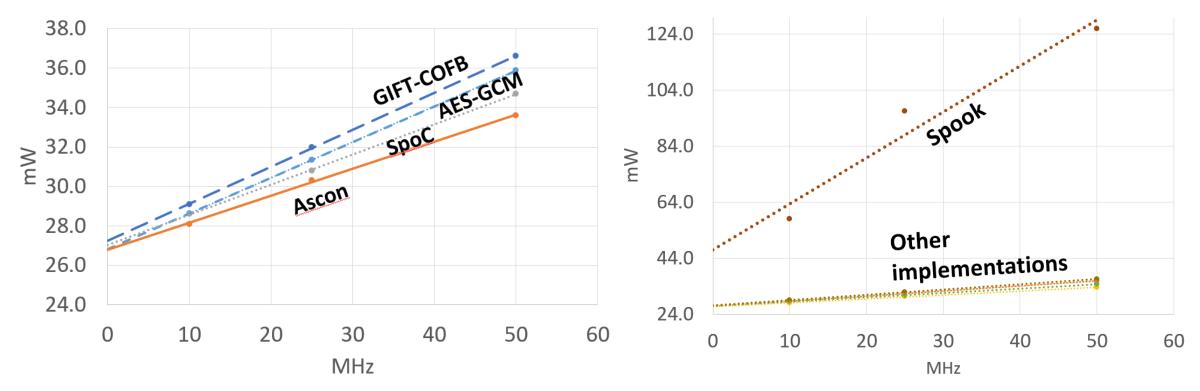
Cipher	SpoC	Spook	GIFT- COFB
Max Freq (MHz)	265	141	172
#Bits/Block	64	256	128
#Cycles/Block	111	145	53
Latency	330	314	165
Throughput (TP) (Mbps)	152.8	248.9	415.4
LUTs	1344	7082	2695
TPA (Mbps/LUT)	0.114	0.035	0.154

Cipher	Туре	FPGA	Freq	Area	TP	ТРА	Ref		
			(MHz)	(LUTs)	(Mbps)	(Mbps/LUT)			
CAESAR									
Ascon-128	Sponge	Spartan-6	216.0	684	60.1	0.088	Yalla et al.: Evaluation of the CAESAR Hardware API for Lightweight Implementations. 2017		
Ascon-small	Sponge	Spartan-6	146.1	1640	114.0	0.070	Diehl et al.: Face-off between the caesar lightweight finalists: Acorn vs. ascon. 2018		
CLOC-AES	Block	Spartan-6	101.9	1604	68.7	0.043	Farahmand et al.: Improved lightweight implementations of caesar authenticated ciphers. 2018		
SILC-AES	Block	Spartan-6	115.1	872	15.1	0.017	Farahmand et al.: Improved lightweight implementations of caesar authenticated ciphers. 2018		
NIST LWC (AEAD)									
SpoC	Sponge	Artix-7	265.0	1344	152.8	0.114	TW		
Spook	Sponge	Artix-7	141.0	7082	248.9	0.035	TW		
Spook	Sponge	Artix-7	181.8	3771	3878.4	1.028	Spook Team: Spook (unprotected) implementation of encryption. email of Jul. 30, 2019.		
GIFT-COFB	Block	Artix-7	172.0	2695	415.4	0.154	TW		
ESTATE	Block	Virtex-7	580.1	1413	928.3	0.657	Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: ESTATE (Mar 2019).		
SAEAES	Block	Virtex-7	145.9	348	263.3	0.757	Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., Sugawara, T.: SAEAES (Feb 2019).		
Oribatida	Sponge	Virtex-7	554.2	940	514	0.547	Bhattacharjee, A., List, E., Lpez, C.M., Nandi, M.: The Oribatida Family of Lightweight Authenticated Encryption Schemes (Mar 2019).		

Power and Energy/Bit

- Power measured @ 10, 25, 50 MHz using FOBOS on Artix-7
- E/bit (nJ/bit) = P (mW)/TP(Mbps)
- Ascon has the lowest power at 50 MHz.
- GIFT-COFB has the lowest E/bit at 50 MHz.
- Spook has the highest power.

Cipher	Freq (MHz)	P _{mean} (mW)	TP (Mbps)	E/bit (nJ/bit)
AES-GCM	10	28.6	6.2	4.59
	25	31.4	15.6	2.01
	50	35.9	31.2	1.15
ASCON	10	28.1	7.8	3.60
	25	30.3	19.5	1.55
	50	33.6	39.0	0.86
SpoC	10	28.6	5.8	4.96
	25	30.8	14.4	2.14
	50	34.7	28.8	1.20
Spook	10	58.8	17.7	3.33
	25	96.5	44.1	2.19
	50	125.9	88.3	1.43
GIFT-COFB	10	29.1	24.2	1.20
	25	32.0	60.4	0.53
	50	36.6	120.8	0.30


Abdulgadir A., Diehl W., Kaps J.P.: An Open-Source Platform for Evaluation of Hardware Implementations of Lightweight Authenticated Ciphers. Submitted in ReConFig 2019.

Power Consumption vs. Freq

- P_{static} is estimated with linear interpolation.
- Static powers of all ciphers (except Spook) are 27.0mW±1%.
- The static power of Spook is much higher, likely due to its larger area.

Abdulgadir A., Diehl W., Kaps J.P.: An Open-Source Platform for Evaluation of Hardware Implementations of Lightweight Authenticated Ciphers. Submitted in ReConFig 2019.

- We provided the first look at 3rd-party FPGA implementations of selected NIST LWC standardization process Round 1 candidates.
- <u>SpoC</u> has the highest maximum frequency of 265 MHz (1.9 greater than Spook), and has the lowest area, in terms of LUTs, with1344 LUTs (19% of the LUTs of Spook).
- <u>GIFT-COFB</u> has the highest throughput (TP) at 415.4 Mbps (2.7 greater than SpoC), the highest throughput-to-area (TPA) ratio at 0.154 Mbps/LUT (4.4 more than Spook), and the lowest energy/bit at 50 MHz.
- <u>Spook</u> has the highest area due to its security features that it guarantees, but can be implemented in leveled implementations to get smaller area and higher TP.

Thank you!

