Implementation of Three LWC Schemes in the WiFi 4-Way Handshake with Software Defined Radio

> Yunjie Yi, Guang Gong, Kalikinkar Mandal {yunjie.yi,ggong,kmandal}@uwaterloo.ca

Department of Electrical and Computer Engineering University of Waterloo Waterloo, ON, N2L 3G1, CANADA

November 4 - 6, 2019

Third Lightweight Cryptography Workshop 2019 at NIST

Outline

- 1. Background
 - SPIX, ACE and WAGE algorithms
 - IEEE 802.1a PHY 4-way handshake and data protection
 - Software defined radio
- 2. Implementation of Three LWC Schemes
 - KDF and MIC generation
 - Implementation on microcontrollers
- 3. Performance Results
 - KDF and MIC for 4-way handshake
 - SPIX, ACE and WAGE for data protection

SPIX: An authenticated encryption algorithm

Design¹

- Adopts the monkey duplex mode of operation
- Underlying permutation: sLiSCP-light-256²
- 128-bit security with straight out parameters:

key size = tag size = nonce size = security level

Data limit: 2⁶³ bytes before re-keying is done

¹ Altawy, R., Gong, G., He, M., Mandal, K., and Rohit, R. SPIX: An authenticated cipher. NIST LWC round 2

2

candidate. (2019)

² Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G. sLiSCP-light: Towards hardware optimized sponge-specific cryptographic permutations. ACM Trans. Embedded Computing Systems. (2018)

SPIX (Cont.)

sLiSCP-light permutation round function State: $X^i = (X_0^i, X_1^i, X_2^i, X_3^i)$ with size 256 bits Simeck box: SB-2n where n = 32

ACE: An AE and hash algorithm

Design goals

- Both AE and Hash functionalities with a single hardware footprint
- 128-bit security level with good security margins
- Balance among hardware cost and software efficiency

ACE Permutation

ACE permutation step function

Parameters¹

- State size: 320 bits
- Nonlinear layer: 3 SB-64 (Simeck) boxes
- Linear layer (*σ*): (3,2,0,4,1)
- # rounds(u)/steps(s): 8/16
- \blacksquare Rate positions: 4 bytes of $\mathsf{A}[7,\cdots,4]$ and $\mathsf{C}[7,\cdots,4]$
- 8-bit round and step constants rc_i^i and sc_i^i

¹ Aagaard, M., AlTawy, R., Gong, G., Mandal, K., and Rohit, R. ACE: An authenticated encryption and hash algorithm. NIST LWC round 2 candidate. (2019)

WAGE: An authenticated encryption algorithm

Design¹

- Underlying permutation: WAGE (over extension field \mathbb{F}_{2^7}) of width 259 bits • Round function of WAGE is constructed by tweaking the initialization phase of the WG stream cipher
- Mode of operation: Similar to ACE
- # rounds: 111
- 128-bit security, low hardware cost
- Data limit: 2⁶⁴ bytes

¹ Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R and Zidaric, N. WAGE: An authenticated cipher. NIST LWC round 2 candidate. (2019)

IEEE 802.1X 4-way handshake and data protection

4-way handshake and data protection

■ 4-way handshake: Conducts mutual entity authentication and generation of session keys

 Data protection: After 4-way handshake, it executes a data protection protocol, either CCMP or GCMP

CCMP: AES in counter mode + CBC MAC

GCMP: AES in counter mode + polynomial hash for MAC

IEEE 802.1X (Cont.)

Computing keys in the 4-way handshake protocol

Pairwise transit key (PTK) is generated as

PTK = KDF(PMK, ANonce||SNonce||AP MAC adr||STA MAC adr)

PTK = KCK ||KEK||TK

- ${\it KCK}$ is used to generate a MIC
- KEK is used for encrypting the group key
- $T\boldsymbol{K}$ is used for protecting traffic data
- Message integrity codes (MICs) are generated as

 $MIC_A = MIC(KCK, ANonce, r)$ $MIC_S = MIC(KCK, SNonce, r)$ $MIC_{all} = MIC(KCK, D, r + 1)$

where r is a replay counter number, and D carries the cipher suite.

Software defined radio (SDR)

SDR setup

 $\scriptstyle \bullet$ SDR has two main parts: Universal Software Radio Peripheral (USRP) and GNU radio

- USRP is a hardware consisting of ADC, DAC, low pass filer and mixer
- GNU radio is a digital signal processing (DSP) software on a Linux OS

OFDM sender

The digital processing part before the USRP sender are done on PC in real time

■ The OFDM sender includes package header generator, modulation, carrier allocator, cyclic prefix and so on

OFDM receiver

■ USRP receiver received sampled data in complex domain

 $\scriptstyle \bullet$ The receiver contains synchronization module, header and payload demux, OFDM demodulation and so on

Our Contribution

Implementation of IEEE802.11a PHY in SDR

- ${\scriptstyle \bullet}$ One USRP is configured as a supplicant and another is an authenticator
- Two USRPs communicate wirelessly

Implementation of KDF and MIC

Implementation - *KDF* and *MIC*

 \blacksquare Sponge structure is used for KDF and generation of MIC

SPIX, ACE and WAGE follow the same framework

Key derivation function construction

Message integrity code generation

Microcontroller implementations: SPIX, ACE and WAGE

Microcontroller platform specifications³

- SPIX, ACE and WAGE are implemented in assembly language
- \blacksquare SPIX: 8-bit, 16-bit and 32-bit microcontrollers Atmega128, MSP430 and Cortex-M3
- ACE: 16-bit and 32-bit microcontrollers MSP430 and Cortex-M3
- $\scriptstyle \blacksquare$ WAGE: 8-bit, 16-bit and 32-bit microcontrollers Atmega128, MSP430 and Cortex-M3
- Clock frequency: 16 MHz for all platforms

Microcontrollers	Flash memory size [kB]	RAM [kB]	Number of general-purpose register
ATmega128(SPIX, WAGE)	128	4.448	32(R0 - R31)
MSP430F2013(ACE, SPIX)	2.304	0.128	12 (R4 - R15)
MSP430F2370(WAGE)	33.024	2.048	12 (R4 - R15)
LM3S9D96(ACE, SPIX, WAGE)	524.288	131.072	13 (R0 - R12)

³Cortex-M3: Cortex-m3lm3s9d96, MSP430: MSP430f2013

- For SPIX, the state is stored in the registers
- For ACE and WAGE, the state is stored in memory
- Instead of loading everything into registers, the WAGE state is continuously stored in random access memory (RAM)
 - Initial memory location and the current round is recorded
 - After the permutation evaluation, copy the final state to the initial state location in RAM
 - Continue the next WAGE permutation evaluation

Performance of 4-way handshake authentication

Authentication time

 \blacksquare Auth-Time includes the 4-way transmission time + computation times of KDF and MIC functions

$$T_{auth} = T_{4-way-tx} + 2 * T_{KDF} + 3 * T_{MIC}.$$

• KDF computation is equivalent to $AE(l_{AD} = 0, l_M = 6)$, no tag • MIC computation is equivalent to $AE(l_{AD} = 4, l_M = 0)$, with tag

$\begin{array}{c} {\rm Cryptographic} \\ {\cal F} \end{array}$	Platform	Function	Memory [Byt SRAM	v usage es] Flash	Setup [Cycles]	Throughput [Kbps]	Gen-time [ms]	4-way-Tx-time [ms]	Auth-Time [ms]
	8-bits	KDF	175	1586	705314	23.23	44.08	700	056.40
	ATmega128	MIC	175	1634	897225	18.26	56.08	700	550.40
SPIX	16-bits	KDF	50	1562	286679	57.15	17.92	690	794.09
01174	MSP430F2013	MIC	50	1580	363991	45.01	22.75	050	
	32-bits	KDF	408	1230	59140	277.04	3.70	700	721.50
	LM3S9D96	MIC	408	1326	75132	218.07	4.70	700	
	16-bits	KDF	330	1720	550752	29.75	34.42	710	895.03
ACE	MSP430F2013	MIC	330	1738	619701	26.44	38.73	/10	
ACE	32-bits	KDF	599	1826	102762	159.44	6.42	720	764.50
	LM3S9D96	MIC	599	1790	115561	141.78	7.22	130	
WAGE	8-bits	KDF	808	4448	139478	117.47	8.72	710	756.78
	ATmega128	MIC	808	4516	156491	104.70	9.78	/10	
	16-bits	KDF	46	4518	166993	98.11	10.44	720	776.01
	MSP430F2013	MIC	46	4536	187340	87.46	11.71	120	
	32-bits	KDF	3084	6278	107071	153.02	6.69	600	725.91
	LM3S9D96	MIC	3084	6382	120190	136.32	7.51	050	

SPIX implementation is faster due to storing state into registers

SPIX for IEEE 802.11i data protection protocol

- \blacksquare 32-bit Cortex-M3 gives the highest throughput and lowest memory usage
- Total time for no AD and 128 bytes message: 1058 ms
- \blacksquare Total time for 16 byte AD and 128 bytes message: 1079 ms

Cryptographic	Platform	Memory usage [Bytes]		Setup	Throughput	Gen-time	Tx-time
		SRAM	Flash	[Cycles]	[Kbps]	[ms]	[IIIS]
SPIX Perm-18	8-bits ATmega128	161	1262	128377	31.91	8.02	N/A
	16-bits MSP430F2013	24	1409	52294	78.33	3.27	n/A
	32-bits LM3S9D96	352	946	10900	375.78	0.68	
SPIX-AE	8-bits ATmega128	175	1550	1667042	9.83	104.19	1060
$(l_{AD} = 0, l_M = 16)$	16-bits MSP430F2013	50	1845	677818	24.17	42.36	1080
	32-bits LM3S9D96	408	1210	139569	117.39	8.72	1050
SPIX-AE	8-bits ATmega128	175	1644	1795322	9.13	112.21	1080
$(l_{AD} = 2, l_M = 16)$	16-bits MSP430F2013	50	1891	730340	22.43	45.65	1050
	32-bits LM3S9D96	424	1326	150313	109.00	9.39	1070

ACE for IEEE 802.11i data protection protocol

- 32-bit Cortex-M3 gives the best result
- \blacksquare Total time for no AD and 128 bytes message: 1087 ms
- $\scriptstyle \bullet$ Total time for 16 byte AD and 128 bytes message: 1098 ms

Cryptographic	Platform	Memory [Byt SRAM	/ usage ies] Flash	Setup [Cycles]	Throughput [Kbps]	Gen-time [ms]	Tx-time [ms]
ACE Perm	16-bits MSP430F2013	304	1456	69440	73.73	4.34	N/A
	32-bits LM3S9D96	523	1598	13003	393.76	0.81	
ACE-AE	16-bits MSP430F2013	330	1740	1445059	11.34	90.32	1060
$(l_{AD} = 0, l_M = 16)$	32-bits LM3S9D96	559	1790	269341	60.83	16.83	107
ACE-AE	16-bits MSP430F2013	330	1786	1582892	10.35	98.93	1080
$(l_{AD} = 2, l_M = 10)$	32-bits LM3S9D96	559	1858	294988	55.54	18.44	1080
$\begin{array}{c} \text{ACE-Hash}\\ (l_M = 2, \ j = 4) \end{array}$	16-bits MSP430F2013	330	1682	413056	4.96	25.82	N/A
	32-bits LM3S9D96	559	1822	77114	26.56	4.82	N/A
ACE-Hash $(l_{12} = 16, i_{12} = 4)$	16-bits MSP430F2013	330	1684	1375672	11.91	85.98	
$(\iota_M = 10, j = 4)$	32-bits LM3S9D96	559	1822	256524	63.87	16.03	

WAGE for IEEE 802.11i data protection protocol

- ${\scriptstyle \bullet}$ Cortex-M3 gives the highest throughput with highest memory usage
- \blacksquare MSP430 gives the slightly lower throughput but much lower memory usage
- Total time for no AD and 128 bytes message: 1077 ms
- \blacksquare Total time for 16 byte AD and 128 bytes message: 1079 ms

Cryptographic	Platform	Memory usage [Bytes]		Setup	Throughput	Gen-time	Tx-time
		SRAM	Flash	[Cycles]	[ICops]	[III5]	[IIIS]
WAGE Perm	8-bits ATmega128	802	4132	19011	217.98	1.19	N/A
	16-bits MSP430F2370	4	5031	23524	176.16	1.47	N/A
	32-bits LM3S9D96	3076	5902	14450	286.78	0.9	
WAGE-AE	8-bits ATmega128	808	4416	362888	45.15	22.68	1080
$(l_{AD} = 0, l_M = 16)$	16-bits MSP430F2370	46	5289	433105	37.83	27.07	1090
	32-bits LM3S9D96	3084	6230	278848	58.76	17.43	1060
WAGE-AE	8-bits ATmega128	808	4502	397260	41.24	24.83	1050
$(l_{AD} = 2, l_M = 16)$	16-bits MSP430F2370	46	5339	474067	34.56	29.63	1060
	32-bits LM3S9D96	3084	6354	305284	53.67	19.08	1060

Conclusions

• Implemented the IEEE 802.11a physical layer OFDM transmission systems by software defined radio to simulate the 4-way handshake modulation and communication

• Implemented the IEEE 802.1x 4-way handshake mutual authentication and key establishment protocol using SPIX, ACE, and WAGE, on three different microcontrollers

 \bullet Throughput of WAGE is higher than that of AES-128 written in ${\rm C}^1$ on the same 8-bit platform.

• Execution time for the cryptographic operations is the dominating factor in the 4-way handshake.

- USRP tx rate: 16.82 Kbps
- WiFi system's tx rate: 50 320 Mbps
- Scaling tx to WiFi: $\frac{0.7 \times 16.82}{50000} = 0.235$ ms

G. Meiser, T. Eisenbarth, K. Lemke-Rust, and C. Paar. Efficient implementation of estream ciphers on 8-bit avr microcontrollers. In 2008 International Symposium on Industrial Embedded Systems, pages 58 - 66, June 2008

Thank you!