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SW/HW Codesign: Motivational Example 1
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Software Software/Hardware

91% major operation(s) 

9% other operations

~1% major operation(s) in HW

9% other operations in SW

speed-up ≥ 100

Total Speed-Up ≥ 10
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9%

Time saved

90%



SW/HW Codesign: Motivational Example 2
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Software Software/Hardware

99% major operation(s) 

1% other operations

~1% major operation(s) in HW

1% other operations in SW

speed-up ≥ 100

Total Speed-Up ≥ 50

Other

1%

Major

99%

Major

~1%

Other

1%

Time saved

98%



SW/HW Codesign: Advantages
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❖ Focus on a few major operations, known to be easily parallelizable

▪ much shorter development time (at least by a factor of 10)

▪ guaranteed substantial speed-up

▪ high-flexibility to changes in other operations (such as candidate

tweaks)

❖ Insight regarding performance of future instruction set extensions of 
modern microprocessors

❖ Possibility of implementing multiple candidates by the same research 
group, eliminating the influence of different

▪ design skills

▪ operation subset (e.g., including or excluding key generation)

▪ interface & protocol

▪ optimization target

▪ platform



SW/HW Codesign: Potential Pitfalls
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❖ Performance & ranking may strongly depend on 

A. features of a particular platform

o Software/hardware interface

o Support for cache coherency

o Differences in max. clock frequency

B. selected hardware/software partitioning

C. optimization of an underlying software implementation

❖ Limited insight on ranking of purely hardware 
implementations

First step, not the ultimate solution!



Two Major Types of Platforms
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FPGA Fabric

& Hard-core Processors

FPGA Fabric, including 

Soft-core Processors

Examples:

• Xilinx Zynq 7000 System on Chip (SoC)

• Xilinx Zynq UltraScale+ MPSoC

• Intel Arria 10 SoC FPGAs

• Intel Stratix 10 SoC FPGAs

Examples:

Xilinx Virtex UltraScale+ FPGAs

Intel Stratix 10 FPGAs, including 

• Xilinx MicroBlaze

• Intel Nios II

• RISC-V, originally UC Berkeley

Processor

w/ Memory

& I/O

FPGA 

Fabric

FPGA 

Fabric

Soft-core

Processor



Two Major Types of Platform
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Feature FPGA Fabric and 

Hard-core Processor

FPGA Fabric with 

Soft-core Processor

Processor ARM MicroBlaze, NIOS II, RISC-V, 

etc.

Clock frequency >1 GHz max. 200-450 MHz

Portability similar FPGA SoCs various FPGAs, FPGA SoCs, 

and ASICs

Hardware accelerators Yes Yes

Instruction set extensions No Yes

Ease of design 

(methodology, tools, OS 

support)

Easy Dependent on a particular 

soft-core processor and 

tool chain

Xilinx Zynq UltraScale+ MPSoC

1.2 GHz ARM Cortex-A53 + UltraScale+ FPGA logic 



Choice of a Platform for Benchmarking
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In NIST presentations to date: 

Embedded Processor:                  FPGA Architecture:

Our recommendation: 

ARM Cortex-A53                              UltraScale+

ARM Cortex-M4                               Artix-7

• No FPGA SoC with ARM Cortex-M4 and Artix-7 on a single chip

• Cortex-M4 and Artix-7 more suitable for lightweight designs, 

Cortex-A53 and UltraScale+ for high performance

• Zynq UltraScale+:

• capability to compare SW/HW implementations with fully-SW 

and fully-HW implementations realized using the same chip

• likely in use in the first years of the new standard 

deployments



Experimental Setup
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Code Release
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• Full Code & Configuration of the Experimental Setup

• Software/Hardware Codesign of Round 1 NTRUEncrypt

to be made available at

https://cryptography.gmu.edu/athena

under PQC

by August 31, 2019



Our
Case Study
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SW/HW Codesign: Case Study
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7 IND-CCA*-secure Lattice-Based Key Encapsulation Mechanisms (KEMs)

representing 

5 NIST PQC Round 2 Submissions

LWE (Learning with Error)-based:

FrodoKEM

RLWR (Ring Learning with Rounding)-based:

Round5

Module-LWR-based:

Saber

* IND-CCA = with Indistinguishability under Chosen Ciphertext Attack

NTRU-based:

NTRU

• NTRU-HPS

• NTRU-HRSS

NTRU Prime

• Streamlined NTRU Prime

• NTRU LPRime



SW/HW Partitioning

Top candidates for offloading to hardware

From profiling:

❖ Large percentage of the execution time

❖ Small number of function calls

From manual analysis of the code:

❖ Small size of inputs and outputs

❖ Potential for combining with neighboring functions

From knowledge of operations and concurrent computing:

❖ High potential for parallelization

18



Operations Offloaded to Hardware

• Major arithmetic operations

• Polynomial multiplications

• Matrix-by-vector multiplications

• Vector-by-vector multiplications

• All hash-based operations

• (c)SHAKE128, (c)SHAKE256

• SHA3-256, SHA3-512

19



Example: LightSaber Decapsulation

MatrixVectorMul

43.44%

InnerProduct

43.52%

GenMatrix

5.03%

GenSecret

2.30%Hash

3.30%

Other

2.40%
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LightSaber Decapsulation

MatrixVectorMul

43.44%

InnerProduct

43.52%

GenMatrix

5.03%

GenSecret

2.30%

Hash

3.30%
Other

2.40%

Execution time saved

88.83%

Other

2.40%

Hardware

Accelerator

8.77%

Total Speed-Up = 100/11.17=9.0

Execution time 

remaining

11.17%

Accelerator Speed-Up = 97.60/8.77=11.1

Execution time of functions 

to be moved to hardware

97.60%

Execution time of functions

remaining in software

2.40% 21



Tentative
Results
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Software Implementations Used

FrodoKEM, NTRU-HPS, NTRU-HRSS, Saber:

Round 2 submission packages – Optimized_Implementation

Round5:    

https://github.com/r5embed/r5embed   (2019-07-28)

Streamlined NTRU Prime, NTRU LPRime: 

supercop-20190811   :  factored 

Changes made after the submission of the paper!

Results substantially different!

New version of the paper available on ePrint soon!
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Total Execution Time in Software [𝜇s]
Encapsulation
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Total Execution Time in Software/Hardware [𝜇s]
Encapsulation
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Total Speed-ups: Encapsulation
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Accelerator Speed-ups: Encapsulation
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SW Part Sped up by HW[%]: Encapsulation
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Total Execution Time in Software [𝜇s]
Decapsulation
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Total Speed-ups: Decapsulation
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Accelerator Speed-ups: Decapsulation
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SW Part Sped up by HW[%]: Decapsulation
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Conclusions

❖ Total speed-ups 

▪ for encapsulation  from  2.4 (Str NTRU Prime) to 28.4 (FrodoKEM)
▪ for decapsulation from   3.9 (NTRU LPRime) to 119.3 (NTRU-HPS)

❖ Total speed-up dependent on the percentage of the software execution 
time taken by functions offloaded to hardware and the amount of 
acceleration itself

❖ Hardware accelerators thoroughly optimized using Register-Transfer Level 
design methodology

❖ Determining optimal software/hardware partitioning requires more work

❖ Ranking of the investigated candidates affected, but not dramatically 
changed, by hardware acceleration

❖ It is possible to complete similar designs for all Round 2 candidates within 
the evaluation period (12-18 months) 

❖ Additional benefit: Comprehensive library of major operations in hardware
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Future Work
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Breadth

Depth

4 Remaining

Lattice-based 

KEMs 

3 Lattice-based 

Digital

Signatures

Current 

work

7 Code-based

KEMs

7 Other

Candidates

More operations moved to hardware / C code optimized for ARM  Cortex-A53*

Algorithmic optimizations of software and hardware* 

Hardware library 

of basic operations 

of lattice-based 

candidates

Hardware library 

of basic operations 

of code-based 

candidates

Hardware 

library 

for PQC

Full hardware implementations

*collaboration with submission teams and other groups very welcome



Q&A
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Suggestions?

CERG: http://cryptography.gmu.edu

ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!



Backup
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Level:

Algorithm

Clock 

Freq

[MHz]

#LUTs #Slices #FFs #36kb

BRAMs

#DSPs

1:FrodoKEM 402 7,213 1,186 6,647 13.5 32

1: Round5 260 55,442 10,381 82,341 0 0

1: Saber 322 12,343 1,989 11,288 3.5 256

1: NTRU-

HPS

200 24,328 4,972 19,244 2.5 677

1: NTRU-

HRSS

200 27,218 5,770 21,410 2.5 701

2: Str NTRU 

Prime

244 55,843 8,134 28,143 3.0 0

2: NTRU 

LPRime

244 50,911 7,874 34,050 2.0 0

Device 274,080 34,260 548,160 912 2,520

Clock Frequency & Resource Utilization

< 31% < 2% < 28%

of total resources of the given device

< 21% < 15%
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Minor Modifications to C code
Bare Metal vs. Linux

• No functions of OpenSSL – standalone implementations of:

o AES: Optimized ANSI C code for the Rijndael cipher (T-box-based)
by Vincent Rijmen, Antoon Bosselaers, and Paulo Barreto
https://fastcrypto.org/front/misc/rijndael-alg-fst.c

o SHA-3: 

▪ fips202.c from SUPERCOP 
by Ronny Van Keer, Gilles Van Assche, Daniel J. Bernstein, and 
Peter Schwabe (for all candidates other than Round5)

▪ r5_xof_shake.c by Markku-Juhani O. Saarinen and 
keccak1600.c from SUPERCOP, by the same authors as fips202.c
(for Round5)

o randombytes():  based on SHAKE rather than AES in NTRU-HPS, 
NTRU-HRSS, and Streamlined NTRU Prime

• No support for SUPERCOP scripts
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randombytes()

❖ Function used for generating pseudorandom byte sequences 

❖ The implementation vary among various benchmarking studies, depending 

on the mode of operation (Bare Metal vs. Operating System), and 

availability of libraries, such as OpenSSL

❖ Used to different extent by implementations of various candidates

Algorithm #Calls #Bytes
(security category 1)

FrodoKEM 1 16

Round5 1 16

Saber 1 32

NTRU-HPS 1 3211

NTRU-HRSS 1 1400

Str NTRU Prime 1 2612

NTRU LPRime 1 32

❖ For 3 algorithms was sped-up over 3 times by using SHAKE128


