
Lower bounds on lattice sieving and information set decoding

Elena Kirshanova Thijs Laarhoven

3rd PQC Standardization Conference

June 4, 2021

To appear at Crypto’21

• Cases of interest:
� L ⊂ Sd−1 – a unit sphere, r = Θ(1)

� L ⊂ {0, 1}d, r = Θ(d)
• Often |L| = exp(d) (dense setting)

• Elements in L are uniformly distributed

The closest pairs problem

L

x

y

Given a list L and r > 0, fnd almost all x, y ∈ L
such that

dist(x, y) < r.

– =

=

=

The closest pairs problem

L

x

y

Given a list L and r > 0, fnd almost all x, y ∈ L
such that

dist(x, y) < r.

• Cases of interest:
� L ⊂ Sd−1 a unit sphere, r Θ(1)

� L ⊂ {0, 1}d , r Θ(d)

• Often |L| exp(d) (dense setting)

• Elements in L are uniformly distributed

=

= =

� �

Why interesting?

L ⊂ Sd−1

x

y

Main subroutine inside sieving algorithms for SVP

�d/24
3For |L| , we can solve this problem in� �d/2�d/23 4

3 space.time and ST 2

Some NIST submitters use these complexities to
setup their parameters.

All o(d) factors in the exponents are omitted

=

=

Why interesting?

L ⊂ {0, 1}d

x

y

Main subroutine inside Information Set Decoding
algorithms, [MO15], [BM18]

Relevant to the dense error setting: wt(e) Θ(d)

NIST submitters use sparse error: wt(e) o(d).

= =

How to solve the closest pairs problem?

Use locality-sensitive hashing (LSH).

[BGJ15], [BDGL16] for Euclidean metric

[MO15] for Hamming metric

LSH is built upon a family of hash functions h such that

Pr [h(x) h(y)] � Pr [h(x) h(y)]
x,y∼Sd−1 x,y∼Sd−1

dist(x,y)<r

x

LSH on the unit sphere

Bucket center x ∈ Sd−1

defnes a region Bx

LSH on the unit sphere

x

y1

y2

y4

y6

y7

y8

y9

y10

y11

Bucket center x ∈ Sd−1

defnes a region Bx

Bucketing phase
∀y ∈ L :
If hx , yi ≥ α :
Put y into Bx

The number of x’s determines the runtime
The shape of x’s determines the complexity of
fnding x for y.

x

x′
y1

yq
2

y8

y9

LSH on the unit sphere

Bucket center x ∈ Sd−1

defnes a region Bx

Bucketing phase
∀y ∈ L :
If hx , yi ≥ α :
Put y into Bx

Query phase
∀Bx s.t. yq ∈ Bx :
∀y ∈ Bx :
Find y0 ∈ Bx s.t.
dist(y0 , yq) < r

x

x′
y1

yq
2

y8

y9

LSH on the unit sphere

Bucket center x ∈ Sd−1

defnes a region Bx

Bucketing phase
∀y ∈ L :
If hx , yi ≥ α :
Put y into Bx

Query phase
∀Bx s.t. yq ∈ Bx :
∀y ∈ Bx :
Find y0 ∈ Bx s.t.
dist(y0 , yq) < r

The number of x’s determines the runtime
The shape of x’s determines the complexity of
fnding x for y.

Consequences:
• Another hashing strategy will not improve the performance of lattice sieving
• Improving only the closest pair subroutine in ISD will not result in a noticeable
gain

• Asymtotically fastest algorithm will choose x’s from a fast-decodable spherical
code (may not exist for arbitrary dimensions).

Our results (informal)

Instantiating LSH with Spherical caps, i.e.,

Bx(α) := {y ∈ Sd−1 : hx , yi ≤ α},

is optimal in the Euclidean metric and almost optimal in the Hamming metric.

Here optimal means that choosing hash regions di˙erent from spherical caps will not
asymptotically improve the performance of LSH.

Our results (informal)

Instantiating LSH with Spherical caps, i.e.,

Bx(α) := {y ∈ Sd−1 : hx , yi ≤ α},

is optimal in the Euclidean metric and almost optimal in the Hamming metric.

Here optimal means that choosing hash regions di˙erent from spherical caps will not
asymptotically improve the performance of LSH.

Consequences:
• Another hashing strategy will not improve the performance of lattice sieving
• Improving only the closest pair subroutine in ISD will not result in a noticeable
gain

• Asymtotically fastest algorithm will choose x’s from a fast-decodable spherical
code (may not exist for arbitrary dimensions).

Baernstein–Taylor rearrangement inequality on Sd−1 [BT76] :

T (f, g, h) ≤ T (f?, g?, h),

for f?, g? depending only on x1 and is non-decreasing in x1,

σ({f? > λ}) = σ({f > λ}), σ({g? > λ}) = σ({g > λ}), ∀λ.

–

Proof technique: Euclidean metric

Convolution on Sd−1 : Z Z
T (f, g, h) := f(x)g(y)h(hx , yi)dσ(x)dσ(y).

Sd−1×Sd−1

f, g : Sd−1 → R, h : [−1, 1] → R, σ normalized surface measure on Sd−1 .

For which f, g, h is T (f, g, h) maximized?

–

= =

Proof technique: Euclidean metric

Convolution on Sd−1 : Z Z
T (f, g, h) := f(x)g(y)h(hx , yi)dσ(x)dσ(y).

Sd−1×Sd−1

f, g : Sd−1 → R, h : [−1, 1] → R, σ normalized surface measure on Sd−1 .

For which f, g, h is T (f, g, h) maximized?

Baernstein–Taylor rearrangement inequality on Sd−1 [BT76] :

T (f, g, h) ≤ T (f? , g ?, h),

for f?, g? depending only on x1 and is non-decreasing in x1,
?σ({f? > λ}) σ({f > λ}), σ({g > λ}) σ({g > λ}), ∀λ.

Notice that (f, g, h, f?, g?), satisfy the BT inequality.

Interpreting integrals as probabilities leads to:

Pr
x,y∼Sd−1

[x ∈ U,y ∈ Q | hx , yi < γ] ≤ Pr
x,y∼Sd−1

[x ∈ CU ,y ∈ CQ |hx , yi < γ].

=
=

= =

= =

= =

=

Proof technique: Euclidean metric

Take

U, Q ⊂ Sd−1 − arbitrary sets CQ {z ∈ Sd−1 : z1 ≥ α}
CU {z ∈ Sd−1 : z1 ≥ α}
σ(U) σ(CU), σ(Q) σ(CQ)

f 1(U) f? 1(CU)
?g 1(Q) g 1(CQ)

h(s) 1{s > r}, r ∈ [−1, 1]

=
=

= =

= =

= =

=

Proof technique: Euclidean metric

Take

U, Q ⊂ Sd−1 − arbitrary sets CQ {z ∈ Sd−1 : z1 ≥ α}
CU {z ∈ Sd−1 : z1 ≥ α}
σ(U) σ(CU), σ(Q) σ(CQ)

f 1(U) f? 1(CU)
?g 1(Q) g 1(CQ)

h(s) 1{s > r}, r ∈ [−1, 1]

Notice that (f, g, h, f?, g?), satisfy the BT inequality.

Interpreting integrals as probabilities leads to:

Pr [x ∈ U, y ∈ Q | hx , yi < γ] ≤ Pr [x ∈ CU , y ∈ CQ |hx , yi < γ].
x,y∼Sd−1 x,y∼Sd−1

This leads to the lower bound on the runtime of closest pairs problem over {0, 1}d:

log2 T ≥
1

1− r/d
log2 |L| .

• [MO15] achieves the lower bound in the sparse setting,
• and comes close to it in the dense setting.

= =

Proof technique: Hamming metric

Andoni-Razenshteyn inequality [AR16]:

For every hash function h : {0, 1}d → Z and every 0 < r ≤ d/2:

r

Pr [h(x) h(y)] ≤ Pr [h(x) h(y)] d−r .
x,y∼{0,1}d x,y∼{0,1}d

E(dist(x,y))=r

= =

Proof technique: Hamming metric

Andoni-Razenshteyn inequality [AR16]:

For every hash function h : {0, 1}d → Z and every 0 < r ≤ d/2:

r

Pr [h(x) h(y)] ≤ Pr [h(x) h(y)] d−r .
x,y∼{0,1}d x,y∼{0,1}d

E(dist(x,y))=r

This leads to the lower bound on the runtime of closest pairs problem over {0, 1}d:
1

log2 T ≥ log2 |L| . 1 − r/d

• [MO15] achieves the lower bound in the sparse setting,
• and comes close to it in the dense setting.

Proof technique: Hamming metric

Source of the gap: we need a set A ⊂ {0, 1}d , for which � � r

|A| d−r

Pr [x ∈ A |y ∈ A] ≤ .
x,y∼{0,1}d 2d

E(dist(x,y))=r

is tight. For spherical caps in {0, 1}d this inequality is not tight.

Interpretation of the result

• The result does not imply a lower bound on all possible sieving algorithms.
Another use of the closest pairs problem or a completely di˙erent technique is
possible.

• E.g., there is not contradiction with the result “Lattice sieving via quantum
random walks” (eprint 2021/570).

• It does imply that we have an optimal near neighbor subroutine within sieving
algorithms.

• It does imply that in order to noticeably improve ISD, another technique is
needed.

References

• [AR16] A. Andoni, I. Razenshteyn. Tight lower bounds for data- dependent locality-sensitive hashing.
• [BDJ15] A. Becker, N. Gama, A.Joux. Speeding-up lattice siev- ing without increasing the memory, using

sub-quadratic nearest neighbor search

• [BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving.

• [BM18] L.Both, A.May. Decoding linear codes with high error rate and its impact for LPN security.
• [BT76] A. Baernstein, B.A. Taylor. Spherical rearrangements, subhar- monic functions, and ?-functions

in n-space.
• [MO15] A. May, I.Ozerov. On computing nearest neighbors with applications to decoding of binary linear

codes.

