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• Cases of interest:
� L ⊂ Sd−1 – a unit sphere, r = Θ(1)

� L ⊂ {0, 1}d, r = Θ(d)
• Often |L| = exp(d) (dense setting)

• Elements in L are uniformly distributed

The closest pairs problem 
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Given a list L and r > 0, fnd almost all x, y ∈ L 
such that 

dist(x, y) < r. 
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Why interesting? 

L ⊂ Sd−1 

x 

y 

Main subroutine inside sieving algorithms for SVP 

�d/24 
3For |L| , we can solve this problem in� �d/2�d/23 4 

3 space.time and ST 2 

Some NIST submitters use these complexities to 
setup their parameters. 

All o(d) factors in the exponents are omitted 
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Why interesting? 

L ⊂ {0, 1}d 

x 

y 

Main subroutine inside Information Set Decoding 
algorithms, [MO15], [BM18] 

Relevant to the dense error setting: wt(e) Θ(d) 

NIST submitters use sparse error: wt(e) o(d). 
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How to solve the closest pairs problem? 

Use locality-sensitive hashing (LSH). 

[BGJ15], [BDGL16] for Euclidean metric 

[MO15] for Hamming metric 

LSH is built upon a family of hash functions h such that 

Pr [h(x) h(y)] � Pr [h(x) h(y)] 
x,y∼Sd−1 x,y∼Sd−1 

dist(x,y)<r 
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LSH on the unit sphere 

Bucket center x ∈ Sd−1 

defnes a region Bx 



LSH on the unit sphere 
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Bucket center x ∈ Sd−1 

defnes a region Bx 

Bucketing phase 
∀y ∈ L : 
If hx , yi ≥ α : 
Put y into Bx 



The number of x’s determines the runtime
The shape of x’s determines the complexity of
fnding x for y.
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LSH on the unit sphere 

Bucket center x ∈ Sd−1 

defnes a region Bx 

Bucketing phase 
∀y ∈ L : 
If hx , yi ≥ α : 
Put y into Bx 

Query phase 
∀Bx s.t. yq ∈ Bx : 
∀y ∈ Bx : 
Find y0 ∈ Bx s.t. 
dist(y0 , yq) < r 
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LSH on the unit sphere 

Bucket center x ∈ Sd−1 

defnes a region Bx 

Bucketing phase 
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If hx , yi ≥ α : 
Put y into Bx 
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∀Bx s.t. yq ∈ Bx : 
∀y ∈ Bx : 
Find y0 ∈ Bx s.t. 
dist(y0 , yq) < r 

The number of x’s determines the runtime 
The shape of x’s determines the complexity of 
fnding x for y. 



Consequences:
• Another hashing strategy will not improve the performance of lattice sieving
• Improving only the closest pair subroutine in ISD will not result in a noticeable
gain

• Asymtotically fastest algorithm will choose x’s from a fast-decodable spherical
code (may not exist for arbitrary dimensions).

Our results (informal) 

Instantiating LSH with Spherical caps, i.e., 

Bx(α) := {y ∈ Sd−1 : hx , yi ≤ α}, 

is optimal in the Euclidean metric and almost optimal in the Hamming metric. 

Here optimal means that choosing hash regions di˙erent from spherical caps will not 
asymptotically improve the performance of LSH. 
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Baernstein–Taylor rearrangement inequality on Sd−1 [BT76] :

T (f, g, h) ≤ T (f?, g?, h),

for f?, g? depending only on x1 and is non-decreasing in x1,

σ({f? > λ}) = σ({f > λ}), σ({g? > λ}) = σ({g > λ}), ∀λ.

–

Proof technique: Euclidean metric 

Convolution on Sd−1 : Z Z 
T (f, g, h) := f(x)g(y)h(hx , yi)dσ(x)dσ(y). 

Sd−1×Sd−1 

f, g : Sd−1 → R, h : [−1, 1] → R, σ normalized surface measure on Sd−1 . 

For which f, g, h is T (f, g, h) maximized? 
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Proof technique: Euclidean metric 

Convolution on Sd−1 : Z Z 
T (f, g, h) := f(x)g(y)h(hx , yi)dσ(x)dσ(y). 
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f, g : Sd−1 → R, h : [−1, 1] → R, σ normalized surface measure on Sd−1 . 

For which f, g, h is T (f, g, h) maximized? 

Baernstein–Taylor rearrangement inequality on Sd−1 [BT76] : 

T (f, g, h) ≤ T (f? , g ?, h), 

for f?, g? depending only on x1 and is non-decreasing in x1, 
?σ({f? > λ}) σ({f > λ}), σ({g > λ}) σ({g > λ}), ∀λ. 



Notice that (f, g, h, f?, g?), satisfy the BT inequality.

Interpreting integrals as probabilities leads to:

Pr
x,y∼Sd−1

[x ∈ U,y ∈ Q | hx , yi < γ] ≤ Pr
x,y∼Sd−1

[x ∈ CU ,y ∈ CQ |hx , yi < γ].
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Proof technique: Euclidean metric 

Take 

U, Q ⊂ Sd−1 − arbitrary sets CQ {z ∈ Sd−1 : z1 ≥ α} 
CU {z ∈ Sd−1 : z1 ≥ α} 
σ(U) σ(CU ), σ(Q) σ(CQ) 

f 1(U) f? 1(CU ) 
?g 1(Q) g 1(CQ) 

h(s) 1{s > r}, r ∈ [−1, 1] 
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This leads to the lower bound on the runtime of closest pairs problem over {0, 1}d:

log2 T ≥
1

1− r/d
log2 |L| .

• [MO15] achieves the lower bound in the sparse setting,
• and comes close to it in the dense setting.
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Proof technique: Hamming metric 

Andoni-Razenshteyn inequality [AR16]: 

For every hash function h : {0, 1}d → Z and every 0 < r ≤ d/2: 

r 

Pr [h(x) h(y)] ≤ Pr [h(x) h(y)] d−r . 
x,y∼{0,1}d x,y∼{0,1}d 

E(dist(x,y))=r 
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Proof technique: Hamming metric 

Andoni-Razenshteyn inequality [AR16]: 

For every hash function h : {0, 1}d → Z and every 0 < r ≤ d/2: 

r 

Pr [h(x) h(y)] ≤ Pr [h(x) h(y)] d−r . 
x,y∼{0,1}d x,y∼{0,1}d 

E(dist(x,y))=r 

This leads to the lower bound on the runtime of closest pairs problem over {0, 1}d: 
1 

log2 T ≥ log2 |L| . 1 − r/d 

• [MO15] achieves the lower bound in the sparse setting, 
• and comes close to it in the dense setting. 



Proof technique: Hamming metric 

Source of the gap: we need a set A ⊂ {0, 1}d , for which � � r 

|A| d−r 

Pr [x ∈ A |y ∈ A] ≤ . 
x,y∼{0,1}d 2d 

E(dist(x,y))=r 

is tight. For spherical caps in {0, 1}d this inequality is not tight. 



Interpretation of the result 

• The result does not imply a lower bound on all possible sieving algorithms. 
Another use of the closest pairs problem or a completely di˙erent technique is 
possible. 

• E.g., there is not contradiction with the result “Lattice sieving via quantum 
random walks” (eprint 2021/570). 

• It does imply that we have an optimal near neighbor subroutine within sieving 
algorithms. 

• It does imply that in order to noticeably improve ISD, another technique is 
needed. 



References 

• [AR16] A. Andoni, I. Razenshteyn. Tight lower bounds for data- dependent locality-sensitive hashing. 
• [BDJ15] A. Becker, N. Gama, A.Joux. Speeding-up lattice siev- ing without increasing the memory, using 

sub-quadratic nearest neighbor search 

• [BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions in nearest neighbor searching 
with applications to lattice sieving. 

• [BM18] L.Both, A.May. Decoding linear codes with high error rate and its impact for LPN security. 
• [BT76] A. Baernstein, B.A. Taylor. Spherical rearrangements, subhar- monic functions, and ?-functions 

in n-space. 
• [MO15] A. May, I.Ozerov. On computing nearest neighbors with applications to decoding of binary linear 

codes. 




