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Goal of LUOV is to reduce the key sizes.
(while preserving the good properties of UOV)

• Generate SK from seed
• Generate most of PK from seed [Petzoldt]
• Field lifting

=

What is LUOV? (baby don’t hurt me) 

Unbalanced Oil and Vinegar (UOV) [Patarin 1997] 

• Quadratic trapdoor function: P : Fn
q → Fm

q with n > m. 

• Trapdoor is a factorization of P F ◦ T , where T is linear 
and F linear in the last m variables (oil variables). 

• Well understood signature scheme, fast, small signatures, but 
large keys. Used as building block for other MQ schemes (e.g. 
Rainbow). 
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Field Lifting Assumption:

Solving a random system P(x) = y over F2r is as hard as solving a
random system P(x) = y , where P is defined over F2, when r is
prime.

= · · ·
= · · ·
= · · ·

Field lifting 

Given a UOV key pair (P, T ) over F2, we can use it as a key pair 
over F2r . 

2 + α30 x 1 + x1x2 + x3 + x1x4 + x4x5 + x5 1 + α2 + 
2 2 + α31 x2x3 + x 3 + x2x6 + x3x4 + x3x5 + x 1 + α + 6 

+ α31 x1x2 + x2x3 + x3x4 + x2 + x5x6 α + α5 + | {z } | {z } 
P(x) H(M) 
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Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) = y for x0 in a subfield.

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity

LUOV-8-58-237 2 F22 ⊂ F28 2107

LUOV-48-43-222 2 F28 ⊂ F248 2135

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

We study some generalization of the attack in revised LUOV
submission document.

=

Attacks 

• Key recovery attacks 
Studied since 1997 

• Forgery attacks: Solve P(x) y for x. 
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• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

• Constant time AVX2 optimized implementation.
• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

Round 2 improvements 

• Take smaller parameters ⇒ more efficient 
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Updated submission package will be online next week.

Round 2.1 modifications 

• Choose field extension of prime degree. 

Original 
F28 

F248 

F264 

F280 

New 
F27 

F247 

F261 

F279 

• Aim for security level 1,3,5 instead of 2,4,5. 
⇒ Smaller keys and signatures and better performance. 
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Performance of AVX2 constant-time implementation (SL I):

keygen sign verify
PRG (cycles) (cycles) (cycles)

Standard LUOV
Keccak 1.9 M 1.4 M 1.0 M
Chacha8 1.1M 515 K 197 K

Precompute Keys1 ? 300 K 90 K

Finish signature 2 ? 11 K

Some numbers 

Key and signature sizes for SL1: 

LUOV-7-57-197 
|sig| 
239 B 

Δ 
−23% 

|pk| 
11.5 KB 

Δ 
−5% 

|sk| 
32B 

LUOV-47-42-182 1332 B −17% 4.7 KB −6% 32B 

1Requires 250 KB to store expanded PK or SK 
2Requires 23 KB to store partial signature 
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Conclusion (part 1) 

Disadvantages: 
• Public key size (11.5 KB) 
• Relatively new LUOV 
assumption 

Advantages: 
• Small signatures (239 B) 
• Small private key (32 B) 
• Solid foundation (UOV) 

• Simple arithmetic (F27 ) 

• Low latency signing 
(11K cycles) 

• No patent claims 
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Questions?

-

Conclusion (part 2) 

“All you need is LUOV” 
John Lennon 
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