
LUOV

Ward Beullens, Bart Preneel, Alan Szepieniec, Frederik
Vercauteren

1 / 10

Overview

1

2

3

4

Introduction

Modifications

Some numbers

Conclusion

2 / 10

Goal of LUOV is to reduce the key sizes.
(while preserving the good properties of UOV)

• Generate SK from seed
• Generate most of PK from seed [Petzoldt]
• Field lifting

=

What is LUOV? (baby don’t hurt me)

Unbalanced Oil and Vinegar (UOV) [Patarin 1997]

• Quadratic trapdoor function: P : Fn
q → Fm

q with n > m.

• Trapdoor is a factorization of P F ◦ T , where T is linear
and F linear in the last m variables (oil variables).

• Well understood signature scheme, fast, small signatures, but
large keys. Used as building block for other MQ schemes (e.g.
Rainbow).

3 / 10

• Generate SK from seed
• Generate most of PK from seed [Petzoldt]
• Field lifting

=

What is LUOV? (baby don’t hurt me)

Unbalanced Oil and Vinegar (UOV) [Patarin 1997]

• Quadratic trapdoor function: P : Fn
q → Fm

q with n > m.

• Trapdoor is a factorization of P F ◦ T , where T is linear
and F linear in the last m variables (oil variables).

• Well understood signature scheme, fast, small signatures, but
large keys. Used as building block for other MQ schemes (e.g.
Rainbow).

Goal of LUOV is to reduce the key sizes.
(while preserving the good properties of UOV)

3 / 10

=

What is LUOV? (baby don’t hurt me)

Unbalanced Oil and Vinegar (UOV) [Patarin 1997]

• Quadratic trapdoor function: P : Fn
q → Fm

q with n > m.

• Trapdoor is a factorization of P F ◦ T , where T is linear
and F linear in the last m variables (oil variables).

• Well understood signature scheme, fast, small signatures, but
large keys. Used as building block for other MQ schemes (e.g.
Rainbow).

Goal of LUOV is to reduce the key sizes.
(while preserving the good properties of UOV)

• Generate SK from seed

• Generate most of PK from seed [Petzoldt]

• Field lifting

3 / 10

Field Lifting Assumption:

Solving a random system P(x) = y over F2r is as hard as solving a
random system P(x) = y , where P is defined over F2, when r is
prime.

= · · ·
= · · ·
= · · ·

Field lifting

Given a UOV key pair (P, T) over F2, we can use it as a key pair
over F2r .

2 + α30 x 1 + x1x2 + x3 + x1x4 + x4x5 + x5 1 + α2 +
2 2 + α31 x2x3 + x 3 + x2x6 + x3x4 + x3x5 + x 1 + α + 6

+ α31 x1x2 + x2x3 + x3x4 + x2 + x5x6 α + α5 + | {z } | {z }
P(x) H(M)

4 / 10

when r is
prime.

= · · ·
= · · ·
= · · ·

=
=

Field lifting

Given a UOV key pair (P, T) over F2, we can use it as a key pair
over F2r .

2 + α30 x 1 + x1x2 + x3 + x1x4 + x4x5 + x5 1 + α2 +
2 2 + α31 x2x3 + x 3 + x2x6 + x3x4 + x3x5 + x 1 + α + 6

+ α31 x1x2 + x2x3 + x3x4 + x2 + x5x6 α + α5 + | {z } | {z }
P(x) H(M)

Field Lifting Assumption:
Solving a random system P(x) y over F2r is as hard as solving a
random system P(x) y , where P is defined over F2,

4 / 10

= · · ·
= · · ·
= · · ·

=
=

Field lifting

Given a UOV key pair (P, T) over F2, we can use it as a key pair
over F2r .

2 + α30 x 1 + x1x2 + x3 + x1x4 + x4x5 + x5 1 + α2 +
2 2 + α31 x2x3 + x 3 + x2x6 + x3x4 + x3x5 + x 1 + α + 6

+ α31 x1x2 + x2x3 + x3x4 + x2 + x5x6 α + α5 + | {z } | {z }
P(x) H(M)

Field Lifting Assumption:
Solving a random system P(x) y over F2r is as hard as solving a
random system P(x) y , where P is defined over F2, when r is
prime.

4 / 10

Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) = y for x0 in a subfield.

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity

LUOV-8-58-237 2 F22 ⊂ F28 2107

LUOV-48-43-222 2 F28 ⊂ F248 2135

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

We study some generalization of the attack in revised LUOV
submission document.

=

Attacks

• Key recovery attacks
Studied since 1997

• Forgery attacks: Solve P(x) y for x.

5 / 10

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity

LUOV-8-58-237 2 F22 ⊂ F28 2107

LUOV-48-43-222 2 F28 ⊂ F248 2135

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

We study some generalization of the attack in revised LUOV
submission document.

=

=

Attacks

• Key recovery attacks
Studied since 1997

• Forgery attacks: Solve P(x) y for x.

Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) y for x0 in a subfield.

5 / 10

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

We study some generalization of the attack in revised LUOV
submission document.

=

=

Attacks

• Key recovery attacks
Studied since 1997

• Forgery attacks: Solve P(x) y for x.

Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) y for x0 in a subfield.

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity
2107 LUOV-8-58-237 2 F22 ⊂ F28

2135 LUOV-48-43-222 2 F28 ⊂ F248

5 / 10

We study some generalization of the attack in revised LUOV
submission document.

=

=

Attacks

• Key recovery attacks
Studied since 1997

• Forgery attacks: Solve P(x) y for x.

Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) y for x0 in a subfield.

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity
2107 LUOV-8-58-237 2 F22 ⊂ F28

2135 LUOV-48-43-222 2 F28 ⊂ F248

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

5 / 10

=

=

Attacks

• Key recovery attacks
Studied since 1997

• Forgery attacks: Solve P(x) y for x.

Subfield differential attack (Ding et al. 2019):
Pick random x0 and solve P(x0 + x0) y for x0 in a subfield.

Claimed complexity of the attack:

Parameters Security lvl Subfield Complexity
2107 LUOV-8-58-237 2 F22 ⊂ F28

2135 LUOV-48-43-222 2 F28 ⊂ F248

Solution: Choose F2r , with r prime, such that there are no
subfields to exploit. ⇒ No performance penalty.

We study some generalization of the attack in revised LUOV
submission document.

5 / 10

• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

• Constant time AVX2 optimized implementation.
• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

Round 2 improvements

• Take smaller parameters ⇒ more efficient

6 / 10

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

• Constant time AVX2 optimized implementation.
• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

Round 2 improvements

• Take smaller parameters ⇒ more efficient

• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

6 / 10

• Constant time AVX2 optimized implementation.
• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

Round 2 improvements

• Take smaller parameters ⇒ more efficient

• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

6 / 10

• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

Round 2 improvements

• Take smaller parameters ⇒ more efficient

• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

• Constant time AVX2 optimized implementation.

6 / 10

Round 2 improvements

• Take smaller parameters ⇒ more efficient

• Add salt to message before signing
⇒ Improved security against fault injection attacks and
side-channel attacks.

• Break up PRNG calls into multiple smaller calls.
⇒ Speed up by parallelization, lower memory usage.

• Constant time AVX2 optimized implementation.

• Add option to use Chacha8 instead of SHAKE to expand
public randomness. ⇒ ×2.5 and ×5.2 faster signing and
verification respectively (SL1).

6 / 10

Updated submission package will be online next week.

Round 2.1 modifications

• Choose field extension of prime degree.

Original
F28

F248

F264

F280

New
F27

F247

F261

F279

• Aim for security level 1,3,5 instead of 2,4,5.
⇒ Smaller keys and signatures and better performance.

7 / 10

Round 2.1 modifications

• Choose field extension of prime degree.

Original
F28

F248

F264

F280

New
F27

F247

F261

F279

• Aim for security level 1,3,5 instead of 2,4,5.
⇒ Smaller keys and signatures and better performance.

Updated submission package will be online next week.

7 / 10

Performance of AVX2 constant-time implementation (SL I):

keygen sign verify
PRG (cycles) (cycles) (cycles)

Standard LUOV
Keccak 1.9 M 1.4 M 1.0 M
Chacha8 1.1M 515 K 197 K

Precompute Keys1 ? 300 K 90 K

Finish signature 2 ? 11 K

Some numbers

Key and signature sizes for SL1:

LUOV-7-57-197
|sig|
239 B

Δ
−23%

|pk|
11.5 KB

Δ
−5%

|sk|
32B

LUOV-47-42-182 1332 B −17% 4.7 KB −6% 32B

1Requires 250 KB to store expanded PK or SK
2Requires 23 KB to store partial signature

8 / 10

Some numbers

Key and signature sizes for SL1:

|sig| Δ |pk| Δ |sk|
LUOV-7-57-197 239 B −23% 11.5 KB −5% 32B
LUOV-47-42-182 1332 B −17% 4.7 KB −6% 32B

Performance of AVX2 constant-time implementation (SL I):

Standard LUOV

Precompute Keys1

Finish signature 2

PRG
Keccak
Chacha8

?
?

keygen sign verify
(cycles) (cycles) (cycles)
1.9 M 1.4 M 1.0 M
1.1M 515 K 197 K

300 K 90 K
11 K

1Requires 250 KB to store expanded PK or SK
2Requires 23 KB to store partial signature

8 / 10

Conclusion (part 1)

Disadvantages:
• Public key size (11.5 KB)
• Relatively new LUOV
assumption

Advantages:
• Small signatures (239 B)
• Small private key (32 B)
• Solid foundation (UOV)

• Simple arithmetic (F27)

• Low latency signing
(11K cycles)

• No patent claims

9 / 10

Questions?

-

Conclusion (part 2)

“All you need is LUOV”
John Lennon

10 / 10

-

Conclusion (part 2)

“All you need is LUOV”
John Lennon

Questions?

10 / 10

	Introduction
	Modifications
	Some numbers
	Conclusion

