On the Multiplicative Complexity of Symmetric Boolean Functions

Luís Brandão, Çağdaş Çalık, Meltem Sönmez Turan, René Peralta

> National Institute of Standards and Technology (Gaithersburg, MD, USA)

The $3^{\text {rd }}$ International Workshop on
Boolean Functions and their Applications (BFA)
June 19, 2018 (Loen, Norway)

Outline

1. Introduction
2. Preliminaries
3. Twin method
4. Final remarks

Outline

\author{

1. Introduction
}
2. Preliminaries
3. Twin method
4. Final remarks

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with n bits of input and $\mathbf{1}$ bit of output.
- \mathcal{B}_{n} : set of $\left(2^{2^{n}}\right)$ Boolean functions with n input bits.

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with n bits of input and 1 bit of output.
- \mathcal{B}_{n} : set of $\left(2^{2^{n}}\right)$ Boolean functions with n input bits.

Boolean circuit: A combination of logic gates to compute functions.
(A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.)

Example gates (fanin 2)

input bits	output bits	
	AND (\wedge)	XOR (\oplus)
01	0	0
10	0	1
11	1	1

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with n bits of input and 1 bit of output.
- \mathcal{B}_{n} : set of $\left(2^{2^{n}}\right)$ Boolean functions with n input bits.

Boolean circuit: A combination of logic gates to compute functions.
(A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.)

Example gates (fanin 2)

input bits	output bits	
	AND (\wedge)	XOR (\oplus)
00	0	0
01	0	1
10	0	1
11	1	0

- For nonlinear gates, we focus on AND gates with fanin 2.
- For linear gates, we focus on XOR gates with arbitrary fanin.

Multiplicative complexity (MC)

$c_{\wedge}(f): \mathbf{M C}$ of a function f

- min \# nonlinear gates needed to implement f by a Boolean circuit

Multiplicative complexity (MC)

$c_{\wedge}(f): \mathbf{M C}$ of a function f

- min \# nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min \# AND (\wedge) gates over the basis $(\wedge, \oplus, 1)$
* (since any fanin- 2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

Multiplicative complexity (MC)

$c_{\wedge}(f)$: MC of a function f

- min \# nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min \# AND (\wedge) gates over the basis $(\wedge, \oplus, 1)$
* (since any fanin- 2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

Why useful to find circuits with minimal MC?

- Shorter secure multi-party computation and zero-knowledge proofs:
- non-linear gates are expensive; linear gates are "for free"
- Resistance to side-channel attacks:
- threshold protection of leakage from non-linear gates has high cost

Multiplicative complexity (MC)

$c_{\wedge}(f)$: MC of a function f

- min \# nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min \# AND (\wedge) gates over the basis $(\wedge, \oplus, 1)$
* (since any fanin- 2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

Why useful to find circuits with minimal MC?

- Shorter secure multi-party computation and zero-knowledge proofs:
- non-linear gates are expensive; linear gates are "for free"
- Resistance to side-channel attacks:
- threshold protection of leakage from non-linear gates has high cost

Notes:

- Finding the MC of a Boolean function is hard
- Almost all $f \in \mathcal{B}_{n}$ have $\mathrm{MC} \geq 2^{n / 2}-n-1$; all $\leq 3 \cdot 2^{(n-1) / 2}-\mathcal{O}_{n}$

Symmetric Boolean functions

\mathcal{S}_{n} : set of $\left(2^{n+1}\right)$ symmetric functions with n input bits

- Output invariant when swapping any pair of input variables.
- Output depends only on the Hamming weight (HW) of the input.

Symmetric Boolean functions

\mathcal{S}_{n} : set of $\left(2^{n+1}\right)$ symmetric functions with n input bits

- Output invariant when swapping any pair of input variables.
- Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric n-bit functions:

- Elementary symmetric $\left(\Sigma_{k}^{n}\right)$: sum of all monomials of degree k (Note: Any $f \in \mathcal{S}_{n}$ is a linear sum of \sum_{i}^{n} 's)
- Counting $\left(E_{k}^{n}\right): 1$ if and only if $H W(x)=k$
- Threshold $\left(T_{k}^{n}\right): 1$ if and only if $H W(x) \geq k$

Symmetric Boolean functions

\mathcal{S}_{n} : set of $\left(2^{n+1}\right)$ symmetric functions with n input bits

- Output invariant when swapping any pair of input variables.
- Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric n-bit functions:

- Elementary symmetric $\left(\Sigma_{k}^{n}\right)$: sum of all monomials of degree k (Note: Any $f \in \mathcal{S}_{n}$ is a linear sum of \sum_{i}^{n} 's)
- Counting $\left(E_{k}^{n}\right): 1$ if and only if $H W(x)=k$
- Threshold $\left(T_{k}^{n}\right): 1$ if and only if $H W(x) \geq k$

Example function:
$M a j_{3}$ - majority bit out of three (outputs 1 iff at least two 1 s in input): $T_{2}^{3}=\left(x_{1} \wedge x_{2}\right) \oplus\left(x_{1} \wedge x_{3}\right) \oplus\left(x_{2} \wedge x_{3}\right)$

Symmetric Boolean functions

\mathcal{S}_{n} : set of $\left(2^{n+1}\right)$ symmetric functions with n input bits

- Output invariant when swapping any pair of input variables.
- Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric n-bit functions:

- Elementary symmetric (Σ_{k}^{n}): sum of all monomials of degree k (Note: Any $f \in \mathcal{S}_{n}$ is a linear sum of \sum_{i}^{n} 's)
- Counting $\left(E_{k}^{n}\right): 1$ if and only if $H W(x)=k$
- Threshold (T_{k}^{n}): 1 if and only if $H W(x) \geq k$

Example function:
Maj_{3} - majority bit out of three (outputs 1 iff at least two 1 s in input):
$T_{2}^{3}=\left(x_{1} \wedge x_{2}\right) \oplus\left(x_{1} \wedge x_{3}\right) \oplus\left(x_{2} \wedge x_{3}\right)=\left(\left(x_{1} \oplus x_{2}\right) \wedge\left(x_{1} \oplus x_{3}\right)\right) \oplus x_{1}$

MC of symmetric functions

Why care about the MC of functions in \mathcal{S}_{n} ?

- Building blocks for other functions Improvements for \mathcal{S}_{n} may carry to non-symmetric functions.

MC of symmetric functions

Why care about the MC of functions in \mathcal{S}_{n} ?

- Building blocks for other functions Improvements for \mathcal{S}_{n} may carry to non-symmetric functions.
E.g.: sum of two n-bit integers, via n applications of Maj_{3}. Three-to-one AND gate reduction leads to $2 / 3$ communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).

MC of symmetric functions

Why care about the MC of functions in \mathcal{S}_{n} ?

- Building blocks for other functions Improvements for \mathcal{S}_{n} may carry to non-symmetric functions.
E.g.: sum of two n-bit integers, via n applications of Maj_{3}. Three-to-one AND gate reduction leads to $2 / 3$ communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).
- Easier start-point for certain MC analyses?

MC of symmetric functions

Why care about the MC of functions in \mathcal{S}_{n} ?

- Building blocks for other functions Improvements for \mathcal{S}_{n} may carry to non-symmetric functions.
E.g.: sum of two n-bit integers, via n applications of Maj_{3}. Three-to-one AND gate reduction leads to $2 / 3$ communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).
- Easier start-point for certain MC analyses?
\mathcal{S}_{n} has 2^{n+1} functions; \mathcal{B}_{n} has $2^{2^{n}}$ functions.
Compared with \mathcal{B}_{n}, can we more easily characterize MC for \mathcal{S}_{n} ?

Summary of new results in this presentation

Summary of new results in this presentation

- Devise "twin" technique to analyze MC of symmetric functions

Summary of new results in this presentation

- Devise "twin" technique to analyze MC of symmetric functions
- Answer two open questions: $c_{\wedge}\left(\Sigma_{4}^{8}\right)=6 ; c_{\wedge}\left(E_{4}^{8}\right)=6$

Summary of new results in this presentation

- Devise "twin" technique to analyze MC of symmetric functions
- Answer two open questions: $c_{\wedge}\left(\Sigma_{4}^{8}\right)=6 ; c_{\wedge}\left(E_{4}^{8}\right)=6$
- Characterize MC of functions in \mathcal{S}_{n}, for up to $n=10$ variables: $n \in\{7,8,9,10\} \wedge f \in \mathcal{B}_{n} \Rightarrow c_{\wedge}(f) \leq n-1$

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks

Affine equivalence

Affine equivalence class. f and g (from \mathcal{B}_{n}) are affine equivalent $(f \sim g)$ if

$$
f(x)=g(A x+a)+b \cdot x+c, \text { where: }
$$

- A is a non-singular $n \times n$ matrix over \mathbb{F}_{2};
- x, a are n-length column vectors over \mathbb{F}_{2};
- b is a n-length row vector over \mathbb{F}_{2}.

Affine equivalence

Affine equivalence class. f and $g\left(\right.$ from $\left.\mathcal{B}_{n}\right)$ are affine equivalent $(f \sim g)$ if

$$
f(x)=g(A x+a)+b \cdot x+c, \text { where: }
$$

- A is a non-singular $n \times n$ matrix over \mathbb{F}_{2};
- x, a are n-length column vectors over \mathbb{F}_{2};
- b is a n-length row vector over \mathbb{F}_{2}.

MC of equivalence class. Multiplicative complexity is invariant under affine transformations: $f \sim g \Rightarrow c_{\wedge}(f)=c_{\wedge}(g)$

Affine equivalence

Affine equivalence class. f and g (from \mathcal{B}_{n}) are affine equivalent $(f \sim g)$ if

$$
f(x)=g(A x+a)+b \cdot x+c, \text { where: }
$$

- A is a non-singular $n \times n$ matrix over \mathbb{F}_{2};
- x, a are n-length column vectors over \mathbb{F}_{2};
- b is a n-length row vector over \mathbb{F}_{2}.

MC of equivalence class. Multiplicative complexity is invariant under affine transformations: $f \sim g \Rightarrow c_{\wedge}(f)=c_{\wedge}(g)$

$n \backslash k$	0	1	2	3	4	5	6	Total
1	1	-	-	-	-	-	-	1
2	1	1	-	-	-	-	-	2
3	1	1	1	-	-	-	-	3
4	1	1	3	3	-	-	-	8
5	1	1	3	17	26	-	-	48
6	1	1	3	24	914	148,483	$931[$ ÇTP18]	150,357 [Mai91]

Table 1: number of classes per n (\#vars) and k (MC)

Max MC of Boolean Functions with $n \leq 6$

- $f \in \mathcal{B}_{4}$ (8 classes) $\Rightarrow c_{\wedge}(f) \leq 3$ [TP15]
- $f \in \mathcal{B}_{5}$ (48 classes) $\Rightarrow c_{\wedge}(f) \leq 4$ [TP15]
- $f \in \mathcal{B}_{6}(150,357$ classes $) \rightarrow c_{\wedge}(f) \leq 6$ [ÇTP18]

Max MC of Boolean Functions with $n \leq 6$

- $f \in \mathcal{B}_{4}$ (8 classes) $\Rightarrow c_{\wedge}(f) \leq 3$ [TP15]
- $f \in \mathcal{B}_{5}$ (48 classes) $\Rightarrow c_{\wedge}(f) \leq 4$ [TP15]
- $f \in \mathcal{B}_{6}(150,357$ classes $) \rightarrow c_{\wedge}(f) \leq 6$ [ÇTP18]
(Circuit) Topologies [CCFS15]
E.g.: $f=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{3}+x_{4}$

Circuit

Topology

Max MC of Boolean Functions with $n \leq 6$

- $f \in \mathcal{B}_{4}$ (8 classes) $\Rightarrow c_{\wedge}(f) \leq 3$ [TP15]
- $f \in \mathcal{B}_{5}$ (48 classes) $\Rightarrow c_{\wedge}(f) \leq 4$ [TP15]
- $f \in \mathcal{B}_{6}(150,357$ classes $) \rightarrow c_{\wedge}(f) \leq 6$ [ÇTP18]
(Circuit) Topologies [CCFS15]

E.g.: $f=x_{1} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{3}+x_{4}$

Circuit

Topology

Method [ÇTP18]

- Iterate over all topologies with 1, 2, 3, ...AND gates

\# AND gates	1	2	3	4	5	6
\# topologies	1	2	8	84	3,170	475,248

- For each topology, mark the classes generated by circuits.
- Max MC for $n=6$ is found when all classes are marked.

Some prior results on the MC of symmetric functions

- Functions in \mathcal{B}_{n} have circuits with $\leq n+3 \sqrt{n}$ AND gates [BPP00]
- The MC of an n-bit nonlinear symmetric function is at least $\left\lfloor\frac{n}{2}\right\rfloor$ [BP08]
- The MC of Σ_{2}^{n} is $\left\lfloor\frac{n}{2}\right\rfloor ;$ the MC of Σ_{3}^{n} is $\left\lceil\frac{n}{2}\right\rceil, \ldots[$ BP08]

Table A. 1 from [BP08]:
MC complexity of the elementary symm \sum_{i}^{n}

$n \backslash i$	2	3	4	5	6	7	8
3	1	2	-	-	-	-	-
4	2	2	3	-	-	-	-
5	2	3	3	4	-	-	-
6	3	3	4	4	5	-	-
7	3	4	4	5	5	6	-
8	4	4	$\mathbf{5 - 6}$	5	6	6	7

Table A. 3 from [BP08]:
MC complexity of the counting function E_{i}^{n}

$n \backslash i$	0	1	2	3	4	5	6	7	8
3	2	2	2	2	-	-	-	-	-
4	3	2	2	2	3	-	-	-	-
5	4	4	3	3	4	4	-	-	-
6	5	4	3	3	5	4	5	-	-
7	6	6	6	6	6	6	6	6	-
8	7	6	6	6	$6-7$	6	6	6	7

Some prior results on the MC of symmetric functions

- Functions in \mathcal{B}_{n} have circuits with $\leq n+3 \sqrt{n}$ AND gates [BPP00]
- The MC of an n-bit nonlinear symmetric function is at least $\left\lfloor\frac{n}{2}\right\rfloor$ [BP08]
- The MC of Σ_{2}^{n} is $\left\lfloor\frac{n}{2}\right\rfloor ;$ the MC of Σ_{3}^{n} is $\left\lceil\frac{n}{2}\right\rceil, \ldots[$ BP08]

Table A. 1 from [BP08]:
MC complexity of the elementary symm Σ_{i}^{n}

$n \backslash i$	2	3	4	5	6	7	8
3	1	2	-	-	-	-	-
4	2	2	3	-	-	-	-
5	2	3	3	4	-	-	-
6	3	3	4	4	5	-	-
7	3	4	4	5	5	6	-
8	4	4	$\mathbf{5 - 6}$	5	6	6	7

Table A. 3 from [BP08]:
MC complexity of the counting function E_{i}^{n}

$n \backslash i$	0	1	2	3	4	5	6	7	8
3	2	2	2	2	-	-	-	-	-
4	3	2	2	2	3	-	-	-	-
5	4	4	3	3	4	4	-	-	-
6	5	4	3	3	5	4	5	-	-
7	6	6	6	6	6	6	6	6	-
8	7	6	6	6	$6-7$	6	6	6	7

Two concrete open questions:

1. What is the MC of Σ_{4}^{8} ? (Is it 5 or 6?)
2. What is the MC of E_{4}^{8} ? (Is it 6 or 7 ?)

Outline

1. Introduction

2. Preliminaries
3. Twin method
4. Final remarks

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

What can we do with this?

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

What can we do with this?
Replace $x_{1} x_{n}$ by y_{1} and let $f^{\prime}\left(y_{1}, x_{2}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

> What can we do with this?

Replace $x_{1} x_{n}$ by y_{1} and let $f^{\prime}\left(y_{1}, x_{2}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Fact: $c_{\wedge}(f) \leq 1+c_{\wedge}\left(f^{\prime}\right)$.

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

> What can we do with this?

Replace $x_{1} x_{n}$ by y_{1} and let $f^{\prime}\left(y_{1}, x_{2}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Fact: $c_{\wedge}(f) \leq 1+c_{\wedge}\left(f^{\prime}\right)$. Twin Conjecture: $c_{\wedge}(f)=1+c_{\wedge}\left(f^{\prime}\right)$

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

> What can we do with this?

Replace $x_{1} x_{n}$ by y_{1} and let $f^{\prime}\left(y_{1}, x_{2}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Fact: $c_{\wedge}(f) \leq 1+c_{\wedge}\left(f^{\prime}\right)$. Twin Conjecture: $c_{\wedge}(f)=1+c_{\wedge}\left(f^{\prime}\right)$
Result: Analyzing $c_{\wedge}\left(f \in \mathcal{T}_{n}\right)$ is reduced to analyzing $c_{\wedge}\left(f^{\prime} \in \mathcal{B}_{n-1}\right)$

Boolean Functions with Twin Variables

(Towards facilitating the analysis of symmetric Boolean functions)
Definition (twin variables): Let $f(x)=x_{i} x_{j} g(x)+h(x)$, where g and h do not depend on x_{i} and x_{j}. Then, x_{i} and x_{j} are called twins in f.
\mathcal{T}_{n} : set of functions in \mathcal{B}_{n} and with twins.
Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{4}\left(1+x_{2}+x_{2} x_{3}\right)+x_{3}$

> What can we do with this?

Replace $x_{1} x_{n}$ by y_{1} and let $f^{\prime}\left(y_{1}, x_{2}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Fact: $c_{\wedge}(f) \leq 1+c_{\wedge}\left(f^{\prime}\right)$. Twin Conjecture: $c_{\wedge}(f)=1+c_{\wedge}\left(f^{\prime}\right)$
Result: Analyzing $c_{\wedge}\left(f \in \mathcal{T}_{n}\right)$ is reduced to analyzing $c_{\wedge}\left(f^{\prime} \in \mathcal{B}_{n-1}\right)$
But what about symmetric functions $\left(\mathcal{S}_{n}\right)$? (next slide)

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})
- Each disjoint var triplet becomes one twin pair and another variable

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})
- Each disjoint var triplet becomes one twin pair and another variable
- For $c_{\wedge}(\cdot)$ analysis, each twin pair is replaced by a new variable

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})
- Each disjoint var triplet becomes one twin pair and another variable
- For $c_{\wedge}(\cdot)$ analysis, each twin pair is replaced by a new variable

Result: $f \in \mathcal{S}_{n}$ is mapped to $f^{\prime} \in \mathcal{B}_{n-\lfloor n / 3\rfloor}$

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})
- Each disjoint var triplet becomes one twin pair and another variable
- For $c_{\wedge}(\cdot)$ analysis, each twin pair is replaced by a new variable

Result: $f \in \mathcal{S}_{n}$ is mapped to $f^{\prime} \in \mathcal{B}_{n-\lfloor n / 3\rfloor} ;$ and $c_{\wedge}(f) \leq\lfloor n / 3\rfloor+c_{\wedge}\left(f^{\prime}\right)$

Symmetric Functions and Twin Variables

Theorem: Any symmetric Boolean function $\left(f \in \mathcal{S}_{n}\right)$ is affine equivalent to a Boolean function ($f^{\prime} \in \mathcal{T}_{n}$) with twins.

Example with elementary symmetric function:

- $f=\Sigma_{2}^{3}=x_{1} x_{2} \oplus x_{1} x_{3} \oplus x_{2} x_{3}=\left(x_{1} \oplus x_{3}\right)\left(x_{2} \oplus x_{3}\right) \oplus x_{3}$
- Var transform $(\tau): x_{1} \rightarrow A+C ; x_{2} \rightarrow A+B ; x_{3} \rightarrow A+B+C+1$
- Result: $\Sigma_{2}^{3}=(B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1=A \oplus B C$

Intuition:

- For any n and k, τ applied to \sum_{k}^{n} combines B and C as twins
- Any $f \in \mathcal{S}_{n}$ is a sum of elementary symmetric functions (\sum_{i}^{n})
- Each disjoint var triplet becomes one twin pair and another variable
- For $c_{\wedge}(\cdot)$ analysis, each twin pair is replaced by a new variable

Result: $f \in \mathcal{S}_{n}$ is mapped to $f^{\prime} \in \mathcal{B}_{n-\lfloor n / 3\rfloor}$; and $c_{\wedge}(f) \leq\lfloor n / 3\rfloor+c_{\wedge}\left(f^{\prime}\right)$
Example: analysis of $f \in \mathcal{S}_{8}$ becomes analysis of $f^{\prime} \in \mathcal{B}_{6}$

Multiplicative Complexity of E_{4}^{8} and Σ_{4}^{8}

Using the Twin technique:

- Reduce \# variables (from 8 to 6): $f \in\left\{E_{4}^{8}, \Sigma_{4}^{8}\right\} \rightarrow f^{\prime} \in \mathcal{B}_{6}$
- Find MC-optimal circuit for $f^{\prime} \in \mathcal{B}_{6}$
- $c_{\wedge}(f) \leq c_{\wedge}\left(f^{\prime}\right)+2$

Multiplicative Complexity of E_{4}^{8} and Σ_{4}^{8}

Using the Twin technique:

- Reduce \# variables (from 8 to 6): $f \in\left\{E_{4}^{8}, \Sigma_{4}^{8}\right\} \rightarrow f^{\prime} \in \mathcal{B}_{6}$
- Find MC-optimal circuit for $f^{\prime} \in \mathcal{B}_{6}$
- $c_{\wedge}(f) \leq c_{\wedge}\left(f^{\prime}\right)+2$

Case $f=E_{4}^{8}$ (counting function):

- It was known that $c_{\wedge}(f) \in\{6,7\}$
- We find that $c_{\wedge}\left(\mathrm{f}^{\prime}\right)=4$
- If follows that $c_{\wedge}(f)=4+2=6$

Multiplicative Complexity of E_{4}^{8} and Σ_{4}^{8}

Using the Twin technique:

- Reduce \# variables (from 8 to 6): $f \in\left\{E_{4}^{8}, \Sigma_{4}^{8}\right\} \rightarrow f^{\prime} \in \mathcal{B}_{6}$
- Find MC-optimal circuit for $f^{\prime} \in \mathcal{B}_{6}$
- $c_{\wedge}(f) \leq c_{\wedge}\left(f^{\prime}\right)+2$

Case $f=E_{4}^{8}$ (counting function):

- It was known that $c_{\wedge}(f) \in\{6,7\}$
- We find that $c_{\wedge}\left(\mathrm{f}^{\prime}\right)=4$
- If follows that $c_{\wedge}(f)=4+2=6$

Case $f=\Sigma_{4}^{8}$ (elementary symmetric function):

- It was known that $c_{\wedge}(f) \in\{5,6\}$
- (Cheap) If twin-conj true: $c_{\wedge}\left(f^{\prime}\right)=4$ directly implies $c_{\wedge}(f)=4+2=6$
- (Expensive) No 5-AND topology can generate f, hence $c_{\wedge}(f)=6$

Transformation and SLPs (just for a glimpse)

Affine transformation from $f \in \mathcal{S}_{8}$ to $f^{\prime} \in \mathcal{T}_{6}$:

- $\left(x_{1}, x_{2}, x_{8}\right) \rightarrow\left(x_{1} \oplus x_{2} \oplus x_{8} \oplus 1, x_{2} \oplus x_{8} \oplus 1, x_{1} \oplus x_{2} \oplus 1\right)$
- $\left(x_{3}, x_{4}, x_{7}\right) \rightarrow\left(x_{3} \oplus x_{4} \oplus x_{7} \oplus 1, x_{4} \oplus x_{7} \oplus 1, x_{3} \oplus x_{4} \oplus 1\right)$
- $\left(x_{5}, x_{6}\right) \rightarrow\left(x_{5}, x_{6}\right)$

SLP for $f=E_{4}^{8}$ (counting function):

```
\(a_{0}=\left(1 \oplus x_{2} \oplus x_{8}\right) \wedge\left(1 \oplus x_{1} \oplus x_{2}\right)\)
\(a_{1}=\left(1 \oplus x_{4} \oplus x_{7}\right) \wedge\left(1 \oplus x_{3} \oplus x_{4}\right)\)
\(a_{2}=\left(a_{0} \oplus a_{1} \oplus 1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{7} \oplus x_{8}\right) \wedge\left(a_{0}\right)\)
\(a_{3}=\left(1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{7} \oplus x_{8}\right) \wedge\left(1 \oplus x_{1} \oplus x_{2} \oplus x_{5} \oplus x_{8}\right)\)
\(a_{4}=\left(a_{2} \oplus 1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8}\right) \wedge\left(a_{0} \oplus a_{1} \oplus a_{3} \oplus 1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{7} \oplus x_{8}\right)\)
\(a_{5}=\left(1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8}\right) \wedge\left(a_{2} \oplus a_{4}\right)\)
\(f=a_{5} \oplus 1 \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8}\)
```

SLP for $f=\Sigma_{4}^{8}$ (elementary symmetric function):

```
a0}=(1\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{8}{})\wedge(1\oplus\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}
a}=(1\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{7}{})\wedge(1\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}
a}=(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{5}{}\oplus\mp@subsup{x}{7}{}\oplus\mp@subsup{x}{8}{})\wedge(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{6}{}\oplus\mp@subsup{x}{7}{}\oplus\mp@subsup{x}{8}{}
a}=(\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{8}{\prime})\wedge(\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{7}{}
a4=(a0}\oplus\mp@subsup{a}{1}{}\oplus\mp@subsup{a}{1}{}\oplus\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{7}{}\oplus\mp@subsup{x}{8}{})\wedge(\mp@subsup{a}{0}{}\oplus\mp@subsup{a}{2}{}\oplus\mp@subsup{a}{3}{}\oplus1\oplus\mp@subsup{x}{3}{}\oplus\mp@subsup{x}{4}{}\oplus\mp@subsup{x}{7}{}
a}=(\mp@subsup{a}{2}{})\wedge(\mp@subsup{a}{3}{}
f= a0}\oplus\mp@subsup{a}{4}{}\oplus\mp@subsup{a}{5}{}\oplus1\oplus\mp@subsup{x}{1}{}\oplus\mp@subsup{x}{2}{}\oplus\mp@subsup{x}{8}{
```


MC-optimal circuit for E_{4}^{8} (just for a glimpse)

MC-optimal circuit for Σ_{4}^{8} (just for a glimpse)

MC of Symmetric Functions with $n \leq 10$

Prior lemma ([BP08]): $c_{\wedge}\left(f \in \mathcal{S}_{7}\right) \leq 8$
Using the twin technique and the ability to find MC for $f \in \mathcal{B}_{n \leq 6}$, we get:

$$
n \in\{7,8,9,10\} \Rightarrow c_{\wedge}\left(f \in \mathcal{S}_{n}\right) \leq n-1
$$

MC of Symmetric Functions with $n \leq 10$

Prior lemma ([BP08]): $c_{\wedge}\left(f \in \mathcal{S}_{7}\right) \leq 8$
Using the twin technique and the ability to find MC for $f \in \mathcal{B}_{n \leq 6}$, we get:

$$
n \in\{7,8,9,10\} \Rightarrow c_{\wedge}\left(f \in \mathcal{S}_{n}\right) \leq n-1
$$

\# Symmetric Boolean Functions

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	Total	*
1	4										4	\checkmark
2	4	4									8	
3	4	4	8								16	
4	4		12	16							32	
5	4		4	24	32						64	
6	4			12	48	64					128	
7	4			4	16	104	128				256	Twin conj. (TC)
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	
10	4					12	0	96	712	1224	2048	

Legend: n (\# input vars); k (\# AND gates); TC (twin conjecture)

MC of Symmetric Functions with $n \leq 10$

Prior lemma ([BP08]): $c_{\wedge}\left(f \in \mathcal{S}_{7}\right) \leq 8$
Using the twin technique and the ability to find MC for $f \in \mathcal{B}_{n \leq 6}$, we get:

$$
n \in\{7,8,9,10\} \Rightarrow c_{\wedge}\left(f \in \mathcal{S}_{n}\right) \leq n-1
$$

\# Symmetric Boolean Functions

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	Total	*
1	4										4	\checkmark
2	4	4									8	
3	4	4	8								16	
4	4		12	16							32	
5	4		4	24	32						64	
6	4			12	48	64					128	
7	4			4	16	104	128				256	Twin conj. (TC)
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	
10	4					12	0	96	712	1224	2048	

Legend: n (\# input vars); k (\# AND gates); TC (twin conjecture)
*: if TC holds, all results are exact; otherwise some MCs might be smaller by 1 .

MC of Symmetric Functions with $n \leq 10$

Prior lemma ([BP08]): $c_{\wedge}\left(f \in \mathcal{S}_{7}\right) \leq 8$
Using the twin technique and the ability to find MC for $f \in \mathcal{B}_{n \leq 6}$, we get:

$$
n \in\{7,8,9,10\} \Rightarrow c_{\wedge}\left(f \in \mathcal{S}_{n}\right) \leq n-1
$$

\# Symmetric Boolean Functions

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	Total	$*$
1	4										4	
2	4	4									8	
3	4	4	8								16	
4	4		12	16							32	
5	4		4	24	32						64	
6	4			12	48	64					128	
7	4			4	16	104	128				256	Twin
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	(TC)
10	4					12	0	96	712	1224	2048	

Legend: n (\# input vars); k (\# AND gates); TC (twin conjecture)
*: if TC holds, all results are exact; otherwise some MCs might be smaller by 1 . Note: all cells are multiple of 4 , since MC is independent of sum by Σ_{0}^{n} and Σ_{1}^{n}

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks

Summary and further research

Summary

- Studied the MC of symmetric functions
- Devised the twin method for reducing \# variables
- Answered two open questions: $c_{\wedge}\left(\Sigma_{4}^{8}\right)=6 ; c_{\wedge}\left(E_{4}^{8}\right)=6$
- Gave upper bounds (conjectured tight) for up to $n=10$ variables
- (Not shown here) new non-tight upper-bounds for higher n

Summary and further research

Summary

- Studied the MC of symmetric functions
- Devised the twin method for reducing \# variables
- Answered two open questions: $c_{\wedge}\left(\Sigma_{4}^{8}\right)=6 ; c_{\wedge}\left(E_{4}^{8}\right)=6$
- Gave upper bounds (conjectured tight) for up to $n=10$ variables
- (Not shown here) new non-tight upper-bounds for higher n

Further research

- Prove (or disprove?) the twin conjecture
- How to enable tight characterizations for higher n ?

Summary and further research

Summary

- Studied the MC of symmetric functions
- Devised the twin method for reducing \# variables
- Answered two open questions: $c_{\wedge}\left(\Sigma_{4}^{8}\right)=6 ; c_{\wedge}\left(E_{4}^{8}\right)=6$
- Gave upper bounds (conjectured tight) for up to $n=10$ variables
- (Not shown here) new non-tight upper-bounds for higher n

Further research

- Prove (or disprove?) the twin conjecture
- How to enable tight characterizations for higher n ?

Thank you for your attention!

References

[Sch89] C.P. Schnorr, The multiplicative complexity of Boolean functions, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, LNCS, vol. 357, pp. 4558. Springer, 1989. doi:10.1007/3-540-51083-4_47
[Mai91] J.A. Maiorana, A Classification of the Cosets of the Reed-Muller Code $\mathcal{R}(1,6)$, in: Mathematics of Computation, vol. 57, no. 195, pp. 403-414. July 1991. doi:10.2307/2938682
[BPP00] J. Boyar, R. Peralta, D. Pochuev, On the multiplicative complexity of Boolean functions over the basis $(\wedge, \oplus, 1)$, Theoretical Computer Science, 2000 - Elsevier doi:10.1016/S0304-3975(99)00182-6
[Fin04] M.G. Find,On the Complexity of Computing Two Nonlinearity Measures, Computer Science - Theory and Applications, pp. 167-175, 2014, Springer. doi:10.1007/978-3-319-06686-8_13
[BP08] J. Boyar, R. Peralta, Tight bounds for the multiplicative complexity of symmetric functions, Theoretical Computer Science 396, (2008), pp. 223-246. doi:10.1016/j.tcs.2008.01.030
[TP15] M.S. Turan, R. Peralta, The Multiplicative Complexity of Boolean Functions on four and five variables, International Workshop on Lightweight Cryptography for Security and Privacy, 2014. doi:10.1007/978-3-319-16363-5_2
[CCFS15] Michael Codisha, Luís Cruz-Filipe, Michael Franka, Peter Schneider-Kamp When Six Gates are Not Enough, Jr. CoRR, 2015. arXiv: 1508.05737
[ÇTP18] Ç. Çalık, M. S. Turan, R. Peralta, The multiplicative complexity of 6-variable Boolean functions, R. Cryptogr. Commun. (2018). doi:10.1007/s12095-018-0297-2

