On the Multiplicative Complexity of Symmetric Boolean Functions

Luís Brandão, Çağdaş Çalık, Meltem Sönmez Turan, René Peralta

National Institute of Standards and Technology (Gaithersburg, MD, USA)

The 3rd International Workshop on Boolean Functions and their Applications (BFA) June 19, 2018 (Loen, Norway)

Contact email: circuit_complexity@nist.gov

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks

Outline

1. Introduction

2. Preliminarie

3. Twin method

4. Final remarks

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

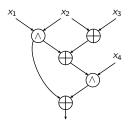
- $f: \{0,1\}^n \to \{0,1\}$ with *n* bits of input and **1** bit of output.
- \triangleright \mathcal{B}_n : set of (2^{2^n}) Boolean functions with *n* input bits.

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

- $f: \{0,1\}^n \to \{0,1\}$ with *n* bits of input and **1** bit of output.
- \triangleright \mathcal{B}_n : set of (2^{2^n}) Boolean functions with *n* input bits.

Boolean circuit: A combination of logic gates to compute functions. (A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.)



Example gates (fanin 2)

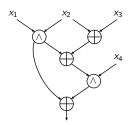
zampre gares (ramm z)									
input	output bits								
bits	AND (\land)	$\mathtt{XOR}\ (\oplus)$							
00	0	0							
01	0	1							
10	0	1							
11	1	0							

Boolean functions and circuits

We focus on Boolean functions (i.e., predicates)

- $f: \{0,1\}^n \to \{0,1\}$ with *n* bits of input and **1** bit of output.
- \triangleright \mathcal{B}_n : set of (2^{2^n}) Boolean functions with *n* input bits.

Boolean circuit: A combination of logic gates to compute functions. (A directed acyclic graph of gates, with inputs as sources, and with outputs as sinks.)



Example gates (fanin 2)

		` /							
input	output bits								
bits	AND (\land)	$\mathtt{XOR}\ (\oplus)$							
00	0	0							
01	0	1							
10	0	1							
11	1	0							

- ▶ For nonlinear gates, we focus on AND gates with fanin 2.
- ► For <u>linear</u> gates, we focus on XOR gates with arbitrary fanin.

$c_{\wedge}(f)$: MC of a function f

▶ min # nonlinear gates needed to implement *f* by a Boolean circuit

$c_{\wedge}(f)$: MC of a function f

- ▶ min # nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min # AND (\wedge) gates over the basis (\wedge , \oplus , 1)
 - * (since any fanin-2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

$c_{\wedge}(f)$: MC of a function f

- ▶ min # nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min # AND (\wedge) gates over the basis (\wedge , \oplus , 1)
 - * (since any fanin-2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

Why useful to find circuits with minimal MC?

- ► Shorter secure multi-party computation and zero-knowledge proofs:
 - non-linear gates are expensive; linear gates are "for free"
- ► Resistance to side-channel attacks:
 - threshold protection of leakage from non-linear gates has high cost

$c_{\wedge}(f)$: MC of a function f

- ▶ min # nonlinear gates needed to implement f by a Boolean circuit
- equivalently*: min # AND (\wedge) gates over the basis (\wedge , \oplus , 1)
 - * (since any fanin-2 nonlinear gate can be replaced by one AND gate and \oplus 's and 1's)

Why useful to find circuits with minimal MC?

- ► Shorter secure multi-party computation and zero-knowledge proofs:
 - non-linear gates are expensive; linear gates are "for free"
- ► Resistance to side-channel attacks:
 - threshold protection of leakage from non-linear gates has high cost

Notes:

- ▶ Finding the MC of a Boolean function is hard
- ▶ Almost all $f \in \mathcal{B}_n$ have $MC \ge 2^{n/2} n 1$; all $\le 3 \cdot 2^{(n-1)/2} \mathcal{O}_n$

S_n : set of (2^{n+1}) symmetric functions with n input bits

- ▶ Output invariant when swapping any pair of input variables.
- ▶ Output depends only on the Hamming weight (HW) of the input.

S_n : set of (2^{n+1}) symmetric functions with n input bits

- ▶ Output invariant when swapping any pair of input variables.
- ▶ Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric *n*-bit functions:

- ► Elementary symmetric (Σ_k^n) : sum of all monomials of degree k (Note: Any $f \in S_n$ is a linear sum of Σ_i^n 's)
- ► Counting (E_k^n) : 1 if and only if HW(x) = k
- ► Threshold (T_k^n) : 1 if and only if $HW(x) \ge k$

S_n : set of (2^{n+1}) symmetric functions with n input bits

- ▶ Output invariant when swapping any pair of input variables.
- ▶ Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric *n*-bit functions:

- ► Elementary symmetric (Σ_k^n) : sum of all monomials of degree k (Note: Any $f \in S_n$ is a linear sum of Σ_i^n 's)
- ► Counting (E_k^n) : 1 if and only if HW(x) = k
- ► Threshold (T_k^n) : 1 if and only if $HW(x) \ge k$

Example function:

 Maj_3 — majority bit out of three (outputs 1 iff at least two 1s in input): $T_2^3 = (x_1 \wedge x_2) \oplus (x_1 \wedge x_3) \oplus (x_2 \wedge x_3)$

S_n : set of (2^{n+1}) symmetric functions with n input bits

- ▶ Output invariant when swapping any pair of input variables.
- ▶ Output depends only on the Hamming weight (HW) of the input.

Examples of classes of symmetric *n*-bit functions:

- ► Elementary symmetric (Σ_k^n) : sum of all monomials of degree k (Note: Any $f \in S_n$ is a linear sum of Σ_i^n 's)
- ► Counting (E_k^n) : 1 if and only if HW(x) = k
- ► Threshold (T_k^n) : 1 if and only if $HW(x) \ge k$

Example function:

Maj₃ — majority bit out of three (outputs 1 iff at least two 1s in input):

$$T_2^3 = (x_1 \wedge x_2) \oplus (x_1 \wedge x_3) \oplus (x_2 \wedge x_3) = ((x_1 \oplus x_2) \wedge (x_1 \oplus x_3)) \oplus x_1$$

Why care about the MC of functions in S_n ?

Building blocks for other functions Improvements for S_n may carry to non-symmetric functions.

Why care about the MC of functions in S_n ?

Building blocks for other functions Improvements for S_n may carry to non-symmetric functions.

E.g.: sum of two *n*-bit integers, via *n* applications of *Maj*₃. Three-to-one AND gate reduction leads to 2/3 communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).

Why care about the MC of functions in S_n ?

Building blocks for other functions Improvements for S_n may carry to non-symmetric functions.

E.g.: sum of two *n*-bit integers, via *n* applications of Maj_3 . Three-to-one AND gate reduction leads to 2/3 communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).

► Easier start-point for certain MC analyses?

Why care about the MC of functions in S_n ?

▶ Building blocks for other functions Improvements for S_n may carry to non-symmetric functions.

E.g.: sum of two n-bit integers, via n applications of Maj_3 . Three-to-one AND gate reduction leads to 2/3 communic. reduction in crypto protocols (e.g., ZK proof of bit-commitments of an integer sum).

▶ Easier start-point for certain MC analyses? S_n has 2^{n+1} functions; B_n has 2^{2^n} functions. Compared with B_n , can we more easily characterize MC for S_n ?

▶ Devise "twin" technique to analyze MC of symmetric functions

▶ Devise "twin" technique to analyze MC of symmetric functions

▶ Answer two open questions: $c_{\wedge}(\Sigma_4^8) = 6$; $c_{\wedge}(E_4^8) = 6$

▶ Devise "twin" technique to analyze MC of symmetric functions

▶ Answer two open questions: $c_{\wedge}(\Sigma_4^8) = 6$; $c_{\wedge}(E_4^8) = 6$

► Characterize MC of functions in S_n , for up to n = 10 variables: $n \in \{7, 8, 9, 10\} \land f \in \mathcal{B}_n \Rightarrow c_{\land}(f) \leq n - 1$

Outline

1. Introduction

2. Preliminaries

3. Twin method

Final remarks

Affine equivalence

Affine equivalence class. f and g (from \mathcal{B}_n) are affine equivalent ($f \sim g$) if

$$f(x) = g(Ax + a) + b \cdot x + c$$
, where:

- ► *A* is a non-singular $n \times n$ matrix over \mathbb{F}_2 ;
- \triangleright x, a are *n*-length column vectors over \mathbb{F}_2 ;
- ▶ *b* is a *n*-length row vector over \mathbb{F}_2 .

Affine equivalence

Affine equivalence class. f and g (from \mathcal{B}_n) are affine equivalent ($f \sim g$) if

$$f(x) = g(Ax + a) + b \cdot x + c$$
, where:

- ▶ *A* is a non-singular $n \times n$ matrix over \mathbb{F}_2 ;
- \triangleright x, a are *n*-length column vectors over \mathbb{F}_2 ;
- ▶ *b* is a *n*-length row vector over \mathbb{F}_2 .

MC of equivalence class. Multiplicative complexity is invariant under affine transformations: $f \sim g \Rightarrow c_{\wedge}(f) = c_{\wedge}(g)$

Affine equivalence

Affine equivalence class. f and g (from \mathcal{B}_n) are affine equivalent ($f \sim g$) if

$$f(x) = g(Ax + a) + b \cdot x + c$$
, where:

- ► *A* is a non-singular $n \times n$ matrix over \mathbb{F}_2 ;
- \triangleright x, a are *n*-length column vectors over \mathbb{F}_2 ;
- ▶ *b* is a *n*-length row vector over \mathbb{F}_2 .

MC of equivalence class. Multiplicative complexity is invariant under affine transformations: $f \sim g \Rightarrow c_{\wedge}(f) = c_{\wedge}(g)$

$n \setminus k$	0	1	2	3	4	5	6	Total
1	1	-	_	_	-	-	-	1
2	1	1	_	_	-	-	_	2
3	1	1	1	_	_	-	_	3
4	1	1	3	3	_	-	_	8
5	1	1	3	17	26	-	_	48
6	1	1	3	24	914	148,483	931 [ÇTP18]	150,357 [Mai91]

Table 1: number of classes per n (#vars) and k (MC)

Max MC of Boolean Functions with $n \le 6$

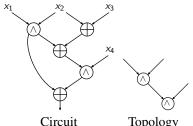
- $f \in \mathcal{B}_4$ (8 classes) $\Rightarrow c_{\wedge}(f) \leq 3$ [TP15]
- ▶ $f \in \mathcal{B}_5$ (48 classes) $\Rightarrow c_{\land}(f) \leq 4$ [TP15]
- ▶ $f \in \mathcal{B}_6$ (150,357 classes) $\rightarrow c_{\land}(f) \leq 6$ [ÇTP18]

Max MC of Boolean Functions with n < 6

- ▶ $f \in \mathcal{B}_4$ (8 classes) $\Rightarrow c_{\land}(f) \leq 3$ [TP15]
- ▶ $f \in \mathcal{B}_5$ (48 classes) $\Rightarrow c_{\land}(f) \leq 4$ [TP15]
- $f \in \mathcal{B}_6$ (150,357 classes) $\rightarrow c_{\land}(f) \leq 6$ [ÇTP18]

(Circuit) Topologies [CCFS15]

E.g.: $f = x_1x_2x_3 + x_1x_2 + x_1x_4 + x_2x_3 + x_4$

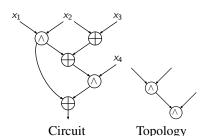


Max MC of Boolean Functions with n < 6

- ▶ $f \in \mathcal{B}_4$ (8 classes) $\Rightarrow c_{\land}(f) \leq 3$ [TP15]
- ▶ $f \in \mathcal{B}_5$ (48 classes) $\Rightarrow c_{\land}(f) \leq 4$ [TP15]
- ▶ $f \in \mathcal{B}_6$ (150,357 classes) $\rightarrow c_{\land}(f) \leq 6$ [ÇTP18]

(Circuit) Topologies [CCFS15]

E.g.: $f = x_1x_2x_3 + x_1x_2 + x_1x_4 + x_2x_3 + x_4$



Method [ÇTP18]

Iterate over all topologies with 1, 2,
 3, ... AND gates

# AND gates	1	2	3	4	5	6
# topologies	1	2	8	84	3,170	475,248

- For each topology, mark the classes generated by circuits.
- Max MC for n = 6 is found when all classes are marked.

Some prior results on the MC of symmetric functions

- ▶ Functions in \mathcal{B}_n have circuits with $\leq n + 3\sqrt{n}$ AND gates [BPP00]
- ► The MC of an *n*-bit *nonlinear* symmetric function is at least $\lfloor \frac{n}{2} \rfloor$ [BP08]
- ▶ The MC of Σ_2^n is $\lfloor \frac{n}{2} \rfloor$; the MC of Σ_3^n is $\lceil \frac{n}{2} \rceil$, ... [BP08]

Table A.1 from [BP08]: MC complexity of the elementary symm Σ_{i}^{n}

							,
$n \setminus i$	2	3	4	5	6	7	8
3	1	2	-	_	_	_	=
4	2	2	3	-	-	-	-
5	2	3	3	4	-	-	-
6	3	3	4	4	5	_	_
7	3	4	4	5	5	6	-
8	4	4	5–6	5	6	6	7

Table A.3 from [BP08]:

MC	MC complexity of the counting function E_i^n											
$n \setminus i$	0	1	2	3	4	5	6	7	8			
3	2	2	2	2	-	-	-	-	_			
4	3	2	2	2	3	-	-	-	-			
5	4	4	3	3	4	4	-	_	_			
6	5	4	3	3	5	4	5	-	-			
7	6	6	6	6	6	6	6	6	-			
8	7	6	6	6	6–7	6	6	6	7			

Some prior results on the MC of symmetric functions

- ► Functions in \mathcal{B}_n have circuits with $\leq n + 3\sqrt{n}$ AND gates [BPP00]
- ▶ The MC of an *n*-bit *nonlinear* symmetric function is at least $\lfloor \frac{n}{2} \rfloor$ [BP08]
- ▶ The MC of Σ_2^n is $\lfloor \frac{n}{2} \rfloor$; the MC of Σ_3^n is $\lceil \frac{n}{2} \rceil$, ... [BP08]

Table A.1 from [BP08]: MC complexity of the elementary symm Σ_i^n

n∖i	2	3	4	5	6	7	8
3	1	2	-	_	_	_	-
4	2	2	3	-	-	-	_
5	2	3	3	4	_	_	-
6	3	3	4	4	5	-	-
7	3	4	4	5	5	6	_
8	4	4	5-6	5	6	6	7

Table A.3 from [BP08]:

MC	MC complexity of the counting function E_i^n												
$n \setminus i$	0	1	2	3	4	5	6	7	8				
3	2	2	2	2	-	-	-	-	_				
4	3	2	2	2	3	-	-	_	-				
5	4	4	3	3	4	4	-	_	_				
6	5	4	3	3	5	4	5	_	-				
7	6	6	6	6	6	6	6	6	-				
8	7	6	6	6	6–7	6	6	6	7				

Two concrete open questions:

- 1. What is the MC of Σ_4^8 ? (Is it 5 or 6?)
- 2. What is the MC of E_4^8 ? (Is it 6 or 7?)

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_j . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_j . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_i . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_i . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

Replace x_1x_n by y_1 and let $f'(y_1, x_2, ..., x_{n-1}) = f(x_1, x_2, ..., x_n)$.

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_j . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

Replace x_1x_n by y_1 and let $f'(y_1, x_2, ..., x_{n-1}) = f(x_1, x_2, ..., x_n)$.

Fact:
$$c_{\wedge}(\mathbf{f}) \leq 1 + c_{\wedge}(\mathbf{f'})$$
.

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_j . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

Replace
$$x_1x_n$$
 by y_1 and let $f'(y_1, x_2, ..., x_{n-1}) = f(x_1, x_2, ..., x_n)$.

Fact:
$$c_{\wedge}(f) \leq 1 + c_{\wedge}(f')$$
. Twin Conjecture: $c_{\wedge}(f) = 1 + c_{\wedge}(f')$

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_i . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

Replace
$$x_1x_n$$
 by y_1 and let $f'(y_1, x_2, ..., x_{n-1}) = f(x_1, x_2, ..., x_n)$.

Fact:
$$c_{\wedge}(f) \leq 1 + c_{\wedge}(f')$$
. Twin Conjecture: $c_{\wedge}(f) = 1 + c_{\wedge}(f')$

Result: Analyzing $c_{\wedge}(f \in \mathcal{T}_n)$ is reduced to analyzing $c_{\wedge}(f' \in \mathcal{B}_{n-1})$

(Towards facilitating the analysis of symmetric Boolean functions)

Definition (twin variables): Let $f(x) = x_i x_j g(x) + h(x)$, where g and h do not depend on x_i and x_i . Then, x_i and x_j are called **twins** in f.

 \mathcal{T}_n : set of functions in \mathcal{B}_n and with twins.

Example:
$$f(x_1, x_2, x_3, x_4) = x_1x_4(1 + x_2 + x_2x_3) + x_3$$

What can we do with this?

Replace
$$x_1x_n$$
 by y_1 and let $f'(y_1, x_2, ..., x_{n-1}) = f(x_1, x_2, ..., x_n)$.

Fact:
$$c_{\wedge}(f) \leq 1 + c_{\wedge}(f')$$
. Twin Conjecture: $c_{\wedge}(f) = 1 + c_{\wedge}(f')$

Result: Analyzing $c_{\wedge}(f \in \mathcal{T}_n)$ is reduced to analyzing $c_{\wedge}(f' \in \mathcal{B}_{n-1})$

But what about symmetric functions (S_n) ? (next slide)

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ▶ Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ▶ Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

▶ For any *n* and *k*, τ applied to Σ_k^n combines **B** and **C** as **twins**

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ► Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- ▶ For any *n* and *k*, τ applied to Σ_k^n combines *B* and *C* as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ► Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- For any *n* and *k*, τ applied to Σ_k^n combines **B** and **C** as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)
- ► Each disjoint var triplet becomes one **twin pair** and another variable

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ► Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- ▶ For any *n* and *k*, τ applied to Σ_k^n combines **B** and **C** as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)
- ► Each disjoint var triplet becomes one **twin pair** and another variable
- ▶ For $c_{\wedge}(\cdot)$ analysis, each **twin pair** is replaced by a new variable

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ▶ Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- For any *n* and *k*, τ applied to Σ_k^n combines **B** and **C** as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)
- ► Each disjoint var triplet becomes one **twin pair** and another variable
- ▶ For $c_{\wedge}(\cdot)$ analysis, each **twin pair** is replaced by a new variable

Result: $f \in \mathcal{S}_n$ is mapped to $f' \in \mathcal{B}_{n-\lfloor n/3 \rfloor}$

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ► Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- ▶ For any *n* and *k*, τ applied to Σ_k^n combines *B* and *C* as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)
- ► Each disjoint var triplet becomes one **twin pair** and another variable
- ▶ For $c_{\wedge}(\cdot)$ analysis, each **twin pair** is replaced by a new variable

Result: $f \in S_n$ is mapped to $f' \in B_{n-\lfloor n/3 \rfloor}$; and $c_{\wedge}(f) \leq \lfloor n/3 \rfloor + c_{\wedge}(f')$

Theorem: Any symmetric Boolean function $(f \in S_n)$ is affine equivalent to a Boolean function $(f' \in T_n)$ with twins.

Example with elementary symmetric function:

- $f = \Sigma_2^3 = x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 = (x_1 \oplus x_3)(x_2 \oplus x_3) \oplus x_3$
- ▶ Var transform (τ) : $x_1 \to A + C$; $x_2 \to A + B$; $x_3 \to A + B + C + 1$
- ► Result: $\Sigma_2^3 = (B \oplus 1)(C \oplus 1) \oplus A \oplus B \oplus C \oplus 1 = A \oplus BC$

Intuition:

- For any *n* and *k*, τ applied to Σ_k^n combines **B** and **C** as **twins**
- ▶ Any $f \in S_n$ is a sum of elementary symmetric functions (Σ_i^n)
- ► Each disjoint var triplet becomes one **twin pair** and another variable
- ► For $c_{\land}(\cdot)$ analysis, each **twin pair** is replaced by a new variable

Result: $f \in S_n$ is mapped to $f' \in B_{n-\lfloor n/3 \rfloor}$; and $c_{\wedge}(f) \leq \lfloor n/3 \rfloor + c_{\wedge}(f')$

Example: analysis of $f \in \mathcal{S}_8$ becomes analysis of $f' \in \mathcal{B}_6$

Multiplicative Complexity of E_4^8 and Σ_4^8

Using the Twin technique:

- ▶ Reduce # variables (from 8 to 6): $f \in \{E_4^8, \Sigma_4^8\} \rightarrow f' \in \mathcal{B}_6$
- ▶ Find MC-optimal circuit for $f' \in \mathcal{B}_6$
- $ightharpoonup c_{\wedge}(f) \leq c_{\wedge}(f') + 2$

Multiplicative Complexity of E_4^8 and Σ_4^8

Using the Twin technique:

- ▶ Reduce # variables (from 8 to 6): $f \in \{E_4^8, \Sigma_4^8\} \rightarrow f' \in \mathcal{B}_6$
- ▶ Find MC-optimal circuit for $f' \in \mathcal{B}_6$
- $ightharpoonup c_{\wedge}(f) \leq c_{\wedge}(f') + 2$

Case $f = E_4^8$ (counting function):

- ▶ It was known that $c_{\land}(f) \in \{6,7\}$
- ▶ We find that $c_{\wedge}(f')=4$
- ▶ If follows that $c_{\wedge}(f) = 4 + 2 = 6$

Multiplicative Complexity of E_4^8 and Σ_4^8

Using the Twin technique:

- ▶ Reduce # variables (from 8 to 6): $f \in \{E_4^8, \Sigma_4^8\} \rightarrow f' \in \mathcal{B}_6$
- ▶ Find MC-optimal circuit for $f' \in \mathcal{B}_6$
- $ightharpoonup c_{\wedge}(f) \leq c_{\wedge}(f') + 2$

Case $f = E_4^8$ (counting function):

- ▶ It was known that $c_{\land}(f) \in \{6,7\}$
- ▶ We find that $c_{\wedge}(f')=4$
- ► If follows that $c_{\wedge}(f) = 4 + 2 = 6$

Case $f = \Sigma_4^8$ (elementary symmetric function):

- ▶ It was known that $c_{\land}(f) \in \{5,6\}$
- ▶ (Cheap) If twin-conj true: $c_{\wedge}(f') = 4$ directly implies $c_{\wedge}(f) = 4 + 2 = 6$
- ► (Expensive) No 5-AND topology can generate f, hence $c_{\wedge}(f) = 6$

Transformation and SLPs (just for a glimpse)

Affine transformation from $f \in S_8$ to $f' \in T_6$:

- $(x_1, x_2, x_8) \to (x_1 \oplus x_2 \oplus x_8 \oplus 1, x_2 \oplus x_8 \oplus 1, x_1 \oplus x_2 \oplus 1)$
- $(x_3, x_4, x_7) \rightarrow (x_3 \oplus x_4 \oplus x_7 \oplus 1, x_4 \oplus x_7 \oplus 1, x_3 \oplus x_4 \oplus 1)$
- $(x_5, x_6) \rightarrow (x_5, x_6)$

SLP for $f = E_4^8$ (counting function):

```
a_0 = (1 \oplus x_2 \oplus x_8) \wedge (1 \oplus x_1 \oplus x_2)
```

$$a_1 = (1 \oplus x_4 \oplus x_7) \wedge (1 \oplus x_3 \oplus x_4)$$

$$a_2 = (a_0 \oplus a_1 \oplus 1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_7 \oplus x_8) \wedge (a_0)$$

$$a_3 = (1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_7 \oplus x_8) \wedge (1 \oplus x_1 \oplus x_2 \oplus x_5 \oplus x_8)$$

$$33 = (1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_7 \oplus x_8) \land (1 \oplus x_1 \oplus x_2 \oplus x_5 \oplus x_8)$$

$$a_4 = (a_2 \oplus 1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8) \land (a_0 \oplus a_1 \oplus a_3 \oplus 1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_7 \oplus x_8)$$

$$a_5 = (1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8) \land (a_2 \oplus a_4)$$

 $f = a_5 \oplus 1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_6 \oplus x_7 \oplus x_8$

SLP for $f = \Sigma_4^8$ (elementary symmetric function):

$$a_0 = (1 \oplus x_2 \oplus x_8) \wedge (1 \oplus x_1 \oplus x_2)$$

$$a_1 = (1 \oplus x_4 \oplus x_7) \wedge (1 \oplus x_3 \oplus x_4)$$

$$a_2 = (x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \oplus x_7 \oplus x_8) \wedge (x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_6 \oplus x_7 \oplus x_8)$$

$$a_3 = (x_1 \oplus x_2 \oplus x_3) \land (x_3 \oplus x_4 \oplus x_7)$$

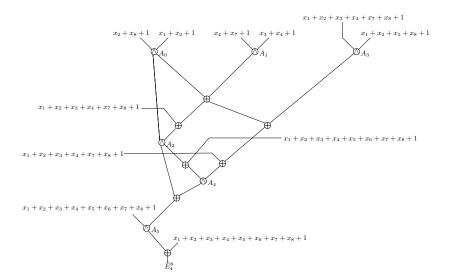
$$a_4 = (a_2 \oplus a_3 \oplus x_4 \oplus x_5 \oplus x_5 \oplus x_5 \oplus x_5 \oplus x_7 \oplus x_5) \land (a_2 \oplus a_3 \oplus a_3 \oplus 1 \oplus x_5 \oplus x_4 \oplus x_7)$$

$$a_4 = (a_0 \oplus a_1 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_7 \oplus x_8) \wedge (a_0 \oplus a_2 \oplus a_3 \oplus 1 \oplus x_3 \oplus x_4 \oplus x_7)$$

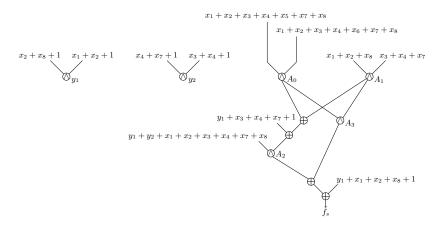
$$a_5 = (a_2) \wedge (a_3)$$

 $f = a_0 \oplus a_4 \oplus a_5 \oplus 1 \oplus x_1 \oplus x_2 \oplus x_8$

MC-optimal circuit for E_4^8 (just for a glimpse)



MC-optimal circuit for Σ_4^8 (just for a glimpse)



Prior lemma ([BP08]): $c_{\wedge}(f \in \mathcal{S}_7) \leq 8$

Using the *twin* technique and the ability to find MC for $f \in \mathcal{B}_{n \le 6}$, we get: $n \in \{7, 8, 9, 10\} \Rightarrow c_{\wedge}(f \in \mathcal{S}_n) \le n - 1$

Prior lemma ([BP08]): $c_{\wedge}(f \in \mathcal{S}_7) \leq 8$

Using the *twin* technique and the ability to find MC for $f \in \mathcal{B}_{n \le 6}$, we get: $n \in \{7, 8, 9, 10\} \Rightarrow c_{\wedge}(f \in \mathcal{S}_n) \le n - 1$

	# Symmetric Boolean Functions											
$n \setminus k$	0	1	2	3	4	5	6	7	8	9	Total	*
1	4										4	
2	4	4									8	
3	4	4	8								16	
4	4		12	16							32] ~
5	4		4	24	32						64	
6	4			12	48	64					128	
7	4			4	16	104	128				256	Twin
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	conj. (TC)
10	4					12	0	96	712	1224	2048	(IC)

Legend: n (# input vars); k (# AND gates); TC (twin conjecture)

Prior lemma ([BP08]): $c_{\wedge}(f \in \mathcal{S}_7) \leq 8$

Using the *twin* technique and the ability to find MC for $f \in \mathcal{B}_{n \le 6}$, we get: $n \in \{7, 8, 9, 10\} \Rightarrow c_{\land}(f \in \mathcal{S}_n) \le n - 1$

	# Symmetric Boolean Functions											
$n \setminus k$	0	1	2	3	4	5	6	7	8	9	Total	*
1	4										4	
2	4	4									8	
3	4	4	8								16	
4	4		12	16							32	1 ~
5	4		4	24	32						64	1
6	4			12	48	64					128	
7	4			4	16	104	128				256	Twin
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	conj. (TC)
10	4					12	0	96	712	1224	2048	(IC)

Legend: n (# input vars); k (# AND gates); TC (twin conjecture)

*: if TC holds, all results are exact; otherwise some MCs might be smaller by 1.

Prior lemma ([BP08]): $c_{\wedge}(f \in \mathcal{S}_7) \leq 8$

Using the *twin* technique and the ability to find MC for $f \in \mathcal{B}_{n \le 6}$, we get: $n \in \{7, 8, 9, 10\} \Rightarrow c_{\land}(f \in \mathcal{S}_n) \le n - 1$

	# Symmetric Boolean Functions											
$n \setminus k$	0	1	2	3	4	5	6	7	8	9	Total	*
1	4										4	
2	4	4									8	1
3	4	4	8								16	
4	4		12	16							32	1 ~
5	4		4	24	32						64	1
6	4			12	48	64					128]
7	4			4	16	104	128				256	Twin
8	4				12	16	224	256			512	
9	4				4	8	48	448	512		1024	conj. (TC)
10	4					12	0	96	712	1224	2048	(10)

Legend: n (# input vars); k (# AND gates); TC (twin conjecture)

*: if TC holds, all results are exact; otherwise some MCs might be smaller by 1.

Note: all cells are multiple of 4, since MC is independent of sum by Σ_0^n and Σ_1^n

Outline

1. Introduction

2. Preliminaries

3. Twin method

4. Final remarks

Summary and further research

Summary

- ► Studied the MC of symmetric functions
- ▶ Devised the twin method for reducing # variables
- ► Answered two open questions: $c_{\wedge}(\Sigma_4^8) = 6$; $c_{\wedge}(E_4^8) = 6$
- ▶ Gave upper bounds (conjectured tight) for up to n = 10 variables
- ► (Not shown here) new non-tight upper-bounds for higher *n*

Summary and further research

Summary

- Studied the MC of symmetric functions
- ▶ Devised the twin method for reducing # variables
- ► Answered two open questions: $c_{\wedge}(\Sigma_4^8) = 6$; $c_{\wedge}(E_4^8) = 6$
- ▶ Gave upper bounds (conjectured tight) for up to n = 10 variables
- ightharpoonup (Not shown here) new non-tight upper-bounds for higher n

Further research

- ▶ Prove (or disprove?) the *twin* conjecture
- ▶ How to enable tight characterizations for higher n?

Summary and further research

Summary

- ► Studied the MC of symmetric functions
- ▶ Devised the twin method for reducing # variables
- ► Answered two open questions: $c_{\wedge}(\Sigma_4^8) = 6$; $c_{\wedge}(E_4^8) = 6$
- ▶ Gave upper bounds (conjectured tight) for up to n = 10 variables
- ► (Not shown here) new non-tight upper-bounds for higher *n*

Further research

- ▶ Prove (or disprove?) the *twin* conjecture
- ▶ How to enable tight characterizations for higher n?

Thank you for your attention!

References

- [Sch89] C.P. Schnorr, The multiplicative complexity of Boolean functions, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, LNCS, vol. 357, pp. 4558. Springer, 1989. doi:10.1007/3-540-51083-4_47
- [Mai91] J.A. Maiorana, A Classification of the Cosets of the Reed-Muller Code R(1, 6), in: Mathematics of Computation, vol. 57, no. 195, pp. 403–414. July 1991. doi:10.2307/2938682
- [BPP00] J. Boyar, R. Peralta, D. Pochuev, On the multiplicative complexity of Boolean functions over the basis (∧, ⊕, 1), Theoretical Computer Science, 2000 - Elsevier doi:10.1016/S0304-3975(99)00182-6
- [Fin04] M.G. Find, On the Complexity of Computing Two Nonlinearity Measures, Computer Science — Theory and Applications, pp. 167–175, 2014, Springer. doi:10.1007/978-3-319-06686-8 13
- [BP08] J. Boyar, R. Peralta, Tight bounds for the multiplicative complexity of symmetric functions, Theoretical Computer Science 396, (2008), pp. 223-246. doi:10.1016/j.tcs.2008.01.030
- [TP15] M.S. Turan, R. Peralta, The Multiplicative Complexity of Boolean Functions on four and five variables, International Workshop on Lightweight Cryptography for Security and Privacy, 2014. doi:10.1007/978-3-319-16363-5_2
- [CCFS15] Michael Codisha, Luís Cruz-Filipe, Michael Franka, Peter Schneider-Kamp When Six Gates are Not Enough. Jr. CoRR, 2015. arXiv:1508.05737
- [CTP18] C. Calik, M. S. Turan, R. Peralta, The multiplicative complexity of 6-variable Boolean functions, R. Cryptogr. Commun. (2018). doi:10.1007/s12095-018-0297-2