Boolean Functions with Multiplicative
 Complexity 3 and 4

Çağdaș Çalık, Meltem Sönmez Turan, René Peralta
National Instutite of Standards and Technology (Gaithersburg MD, USA)

Boolean Functions and Applications, Florence, Italy 2019

Motivation

General Circuit Complexity Problem

Given a basis of Boolean gates, construct a circuit that computes a function that is optimal w.r.t. to some criteria.

Multiplicative Complexity (MC) of f, denoted $C_{\wedge}(f)$, is the minimum number of AND gates that is sufficient to evaluate f over the basis (AND, XOR, NOT).

- Relevant for side channel resistance, secure multi-party computation, cryptanalysis etc.

Some Properties of Multiplicative Complexity

- MC of a randomly selected n-variable Boolean function is at least $2^{n / 2}-\mathcal{O}(n)$ with high probability [BPP00].
- MC of a function with degree d is at least $d-1$ (degree bound).
- MC is affine invariant.
- Boolean functions $f, g \in B_{n}$ are affine equivalent if there exists a transformation of the form $f(x)=g(A x+a)+b \cdot x+c$, where $A \in G L(n, 2) ; a, b \in \mathbb{F}_{2}^{n}$, and $c \in \mathbb{F}_{2}$.
- The set of affine equivalent functions constitute an equivalence class denoted by $[f]$, where f is an arbitrary function from the class.
- Affine equivalent Boolean functions have the same MC.

Enumeration by number of variables

MC distribution is known for up to 6 -variables:

- $C_{\wedge}(f) \leq n-1$ for $f \in B_{n}, n \leq 5$ [TP14],
- $C_{\wedge}(f) \leq 6$ for $f \in B_{6}$ [CTP18].

The method is infeasible for $n \geq 7$, due to the large number of affine equivalence classes and topologies.

Enumeration by multiplicative complexity

Exhaustively construct all Boolean topologies with 1,2, 3, ... AND gates, and evaluate the topologies until a function from $[f]$ is generated.

- Topology: Abstraction of a Boolean circuit that shows the relations between AND gates

Topology

Boolean functions with MC 1 and 2

Boolean functions with MC 1 [FP02]

- Functions with MC 1 are affine equivalent to $x_{1} x_{2}$.
- The number of n-variable Boolean functions with MC 1 is $2\binom{2^{n}}{3}$.

Boolean functions with MC 2 [FTT17]

- Functions with MC 2 are affine equivalent to one of the functions from the set $\left\{x_{1} x_{2} x_{3}, x_{1} x_{2} x_{3}+x_{1} x_{4}, x_{1} x_{2}+x_{3} x_{4}\right\}$.
- The number of n-variable Boolean functions with MC 2 is

$$
2^{n}\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right)\left(\frac{2}{21}+\frac{2^{n}-8}{12}+\frac{2^{n}-8}{360}\right) .
$$

Boolean functions with MC 3 and 4

This work: Find exhaustive list of equivalence classes with MC 3 and 4 .

Approach

Step 1. Construct Boolean circuits (topologies) with 3 and 4 AND gates.
Step 2. Evaluate the circuits to generate Boolean functions.
Step 3. Identify distinct affine equivalence classes with MC 3 and 4 .

Constructing Topologies [CTP18]

Topologies with 1 AND gate

Topologies with 2 AND gates

 and

Topologies with 3 AND gates

Number of topologies with 4 AND gates is 84 .

Boolean functions with MC 3 and 4

This work: Find exhaustive list of equivalence classes with MC 3 and 4 . Approach
Step 1. Construct Boolean circuits (topologies) with 3 and 4 AND gates. Step 2. Evaluate the circuits to generate Boolean functions.
Step 3. Identify distinct affine equivalence classes with MC 3 and 4.

Evaluating Topologies to Generate Boolean Functions

- A topology with k AND gates can be supplied $2 k$ linear function inputs $X=\left(L_{1}, \ldots, L_{2 k}\right)$.
- Any affine transformation of the inputs

Evaluating Topologies to Generate Boolean Functions

- A topology with k AND gates can be supplied $2 k$ linear function inputs $X=\left(L_{1}, \ldots, L_{2 k}\right)$.
- Any affine transformation of the inputs
 $A(X)=\left(A\left(L_{1}\right), \ldots, A\left(L_{2 k}\right)\right)$ will produce a function from the same equivalence class. Hence, the inputs that are affine transformations of each other need not be considered.

Warning: One topology can correspond to multiple equivalence classes of functions.

Dimension of a Boolean function

The following functions are affine equivalent:

$$
\begin{aligned}
& x_{1} x_{2} \\
& x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}
\end{aligned}
$$

Affine transformations can eliminate variables.
It is easier to work on smaller number of variables.

Dimension of a Boolean function

The following functions are affine equivalent:

$$
\begin{aligned}
& x_{1} x_{2} \\
& x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}
\end{aligned}
$$

Affine transformations can eliminate variables.
It is easier to work on smaller number of variables.

Definition. Let L_{f} be the number of input variables that appear in the algebraic normal form (ANF) of a Boolean function f. The dimension of f is the smallest number of variables that appear in the ANF among the functions that are affine equivalent to f :

$$
\operatorname{dim}(f)=\min _{g \in[f]} L_{g}
$$

Autocorrelation, Linear Structures, and Dimension

The autocorrelation of a Boolean function f at $\alpha \in \mathbb{F}_{2}^{n}$ is

$$
R_{f}(\alpha)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+f(x+\alpha)}
$$

The autocorrelation spectrum of f is the vector $\left[R_{f}(0), \ldots, R_{f}\left(2^{n}-1\right)\right]$.
$\alpha \in \mathbb{F}_{2}^{n}$ is a linear structure ${ }^{1}$ of f if $f(x)+f(x+\alpha)$ is constant.
The linearity dimension of f is equal to

$$
d_{l}(f)=\log _{2} \#\left\{\left|R_{f}(\alpha)\right|=2^{n}, \alpha \in \mathbb{F}_{2}^{n}\right\} .
$$

Observation: the dimension of an n-variable Boolean function is:

$$
\operatorname{dim}(f)=n-d_{l}(f) .
$$

${ }^{1}$ X. Lai, Additive and Linear Structures of Cryptographic Functions, FSE'94.

A New MC Lower Bound based on Dimension

Theorem

For $f \in B_{n}, C_{\wedge}(f) \geq\lceil\operatorname{dim}(f) / 2\rceil$.

Sketch of the proof.

1. Let $C_{\wedge}(f)=k$, consider a circuit implementing f with k AND gates.
2. The topology with k AND gates has $2 k$ linear function inputs.
3. The rank of $2 k$ linear functions can be at most $2 k$.
4. Any set of $2 k$ linear functions on $n>2 k$ variables can be affine transformed to functions having at most $2 k$ variables.
5. Therefore, $\operatorname{dim}(f) \leq 2 k$, which implies $C_{\wedge}(f) \geq\lceil\operatorname{dim}(f) / 2\rceil$.

Example. Let $f=\Sigma_{4}^{8}=x_{1} x_{2} x_{3} x_{4}+\ldots+x_{5} x_{6} x_{7} x_{8}$. According to the degree bound, $C_{\wedge}(f) \geq 3$. By dimension bound, $C_{\wedge}(f) \geq 8 / 2=4$.

Boolean functions with MC 3 and 4

This work: Find exhaustive list of equivalence classes with MC 3 and 4 . Approach
Step 1. Construct Boolean circuits (topologies) with 3 and 4 AND gates.
Step 2. Evaluate the circuits to generate Boolean functions.
Step 3. Identify distinct affine equivalence classes with MC 3 and 4 .

Affine Equivalence Classes with MC 3

Dimension 4:

$x_{1} x_{2} x_{3} x_{4}$
$x_{1} x_{2}+x_{1} x_{2} x_{3} x_{4}$
$x_{2} x_{3}+x_{1} x_{4}+x_{1} x_{2} x_{3} x_{4}$

Dimension 5:

$x_{3} x_{4}+x_{1} x_{5}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{3} x_{4}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{5}$
$x_{2} x_{4}+x_{1} x_{5}+x_{1} x_{2} x_{3}$	$x_{4} x_{5}+x_{1} x_{2} x_{3}$
$x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{1} x_{3} x_{4}+x_{1} x_{2} x_{5}$
$x_{2} x_{3} x_{5}+x_{1} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{3} x_{5}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$
$x_{1} x_{3}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{3} x_{4}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$
$x_{1} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{2} x_{3}+x_{1} x_{5}+x_{1} x_{2} x_{3} x_{4}$
$x_{2} x_{3}+x_{2} x_{3} x_{5}+x_{1} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{1} x_{5}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$

Dimension 6:

$x_{3} x_{4}+x_{2} x_{5}+x_{1} x_{6}$	$x_{1} x_{6}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{5}$
$x_{3} x_{4}+x_{1} x_{6}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{5}$	$x_{4} x_{5}+x_{1} x_{6}+x_{1} x_{2} x_{3}$
$x_{1} x_{6}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$	$x_{5} x_{6}+x_{3} x_{4} x_{5}+x_{1} x_{2} x_{6}+x_{1} x_{2} x_{3} x_{4}$
$x_{3} x_{4}+x_{1} x_{6}+x_{1} x_{2} x_{5}+x_{1} x_{2} x_{3} x_{4}$	

Number of Boolean functions with MC 3

The number of n-variable Boolean functions with MC 3 is

$$
2^{n-4} \prod_{i=0}^{3} \frac{2^{n}-2^{i}}{2^{4}-2^{i}} s_{4}+2^{n-5} \prod_{i=0}^{4} \frac{2^{n}-2^{i}}{2^{5}-2^{i}} s_{5}+2^{n-4} \prod_{i=0}^{5} \frac{2^{n}-2^{i}}{2^{6}-2^{i}} s_{6},
$$

where

$$
\begin{array}{ll}
s_{4} & =32768 \\
s_{5} & =1576479744 \\
s_{6} & =183894007808
\end{array}
$$

Affine Equivalence Classes with MC 4

After evaluating 84 topologies with 4 AND gates, we obtained

- 26 classes with dimension 5 ,
- 888 classes with dimension 6 ,
- 321 classes with dimension 7,
- 42 classes with dimension 8 .

Complete list is available at:
https://github.com/usnistgov/Circuits/tree/master/data/mc_dim

Conclusion

- Provided a new lower bound for the MC of Boolean functions based on their dimension.
- Identified all equivalence classes with MC 3 (24 classes) and MC 4 (1277 classes).
- Ongoing. The identification of classes with MC 5 is still in progress.

MC	dimension											
	2	3	4	5	6	7	8	9	10	11	12	Total
1	1											1
2		1	2									3
3			3	14	7							24
4				26	888	321	42					1277
5					148483	*	*	*	575			*
6					931	*	*	*	*	*	*	*

Table 1: The Distribution of Classes w.r.t MC and Dimension.

More Information

NIST Circuit Complexity Project Webpage:
https://csrc.nist.gov/Projects/Circuit-Complexity
GitHubLink:
https://github.com/usnistgov/Circuits/
Contact email:
circuit_complexity@nist.gov

References

[BPP00] J. Boyar, R. Peralta, and D. Pochuev, "On the multiplicative complexity of Boolean functions over the basis ($\wedge, \oplus, 1$), Theoretical Computer Science, vol. 235, no. 1, pp. $43-57,2000$.
[CTP18] Ç. Çalık, M. Sönmez Turan, R. Peralta, The Multiplicative Complexity of 6 -variable Boolean Functions, Cryptography and Communications 2018.
[FP02] M. J. Fischer and R. Peralta. Counting Predicates of Conjunctive Complexity One. Yale Technical Report 1222, February 2002.
[FTT17] M. G. Find, D. Smith-Tone, M. Sönmez Turan, The Number of Boolean Functions with Multiplicative Complexity 2, International Journal of Information and Coding Theory, 2017.
[Lai94] X. Lai, Additive and Linear Structures of Cryptographic Functions, FSE 1994, LNCS 1008, Springer-Verlag, pp. 75-85, 1994.
[Nyb92] K. Nyberg, On the Construction of Highly Nonlinear Permutations, Eurocrypt'92.
[TP14] M. Sönmez Turan and R. Peralta. The Multiplicative Complexity of Boolean functions on Four and Five Variables. LightSec 2014, Turkey.

Computing the Autocorrelation Spectrum

Wiener-Khintchine Theorem

The autocorrelation spectrum and the Walsh spectrum of a Boolean function are related in the following way:

$$
\left[R_{f}(0), \ldots, R_{f}\left(2^{n}-1\right)\right]=\frac{1}{2^{n}}\left[W_{f}^{2}(0), \ldots, W_{f}^{2}\left(2^{n}-1\right)\right] H_{n}
$$

where H_{n} is the Sylvester-Hadamard matrix of order 2^{n}.
Computing the autocorrelation spectrum of $f \in \mathcal{B}_{n}$ can be carried out as follows:

1. Compute the Walsh spectrum of f using Fast Walsh Transform.
2. Take the squares of Walsh spectrum entries.
3. Apply another Fast Walsh Transform to the resulting sequence.
4. Divide each entry by 2^{n}.

The complexity of computing the autocorrelation spectrum is $\mathcal{O}\left(n 2^{n}\right)$

Autocorrelation-ANF Relationship

Any Boolean function can be expressed in the form

$$
f(x)=x_{i} g_{1}(x)+g_{2}(x)
$$

where the functions $g_{1}(x)$ and $g_{2}(x)$ do not depend on x_{i}. Let $\alpha_{i} \in \mathbb{F}_{2}^{n}=e_{i}$, i.e., $w_{H}\left(\alpha_{i}\right)=1$. Then,

$$
\begin{aligned}
R_{f}\left(\alpha_{i}\right) & =f(x)+f\left(x+\alpha_{i}\right) \\
& =\left[x_{i} g_{1}(x)+g_{2}(x)\right]+\left[\left(x_{i}+1\right) g_{1}(x)+g_{2}(x)\right] \\
& =g_{1}(x)
\end{aligned}
$$

If $\left|R_{f}\left(\alpha_{i}\right)\right|=2^{n}$ implies $g_{1}(x)$ is constant. Also,

- If $g_{1}(x)=0$ then x_{i} does not appear in the ANF.
- If $g_{1}(x)=1$ then $f(x)=x_{i}+g_{2}(x)$, i.e., x_{i} appears as a linear term.
- Conclusion. f is either independent of x_{i} or can be transformed to a function that is independent of x_{i}.

