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Lattice signatures 



Lattice-based signatures in NIST’s call 

Two finalists are based on structured lattices: 

FALCON 

“Hash-and-sign” in lattices [GPV’08] 
+ NTRU trapdoors [DLP’14] 

3 compact, fast 

5 restricted parameter set, quite 

hard to implement and protect 
against side-channels 

CRYSTALS-DILITHIUM 

Fiat-Shamir “with abort” [Lyu12] 
+ module lattices 

5 larger bandwdith 

3 large range of parameter sets, 
easier to implement and protect 
against side-channels 
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Lattice-based signatures in NIST’s call 

Two finalists are based on structured lattices: 

FALCON CRYSTALS-DILITHIUM 

“Hash-and-sign” in lattices [GPV’08] Fiat-Shamir “with abort” [Lyu12] 
+ NTRU trapdoors [DLP’14] + module lattices 

Introducing: [ Mitaka ] 
trying to reach best of both worlds 

3 compact, fast 3 easier to implement and protect 
against side-channels 

3 large range of parameters sets 
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Rationale of Falcon 

NTRU lattices
Compact trapdoors

 NTRUSign+[DLP+14]

FFO Sampler
(recursive Klein on Ring)

[DP16]

Falcon 
“ Efficient GPV ”

Power-of-two 
Cylotomic rings

NTRU lattices: free rank 2 modules 

over cyclotomic rings 

Quasi-linear thanks to the ring but 
• Few parameter sets 

• Complicated implementation 

• Complicated masking 
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NTRU lattices
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“ Efficient GPV ”

Power-of-two 
Cylotomic rings

Towards Mitaka 
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NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
[DP?]  Simpler, efficient

MITAKA

(not yet)

Power-of-two 
Cylotomic rings

Towards Mitaka 
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Hash-and-sign over lattices 



The GPV Framework [GPV’08] 

Simplified Signsk,σ(msg) : ”Good basis” sk of L, bad basis pk 

1. m = H(msg) 

2. v ← GaussianSampler(sk, m, σ) 

3. Signature: s = m − v. 

Simplified VerifL=pk(msg, s) : 

1. If ∥s∥ too big, reject. 

2. If m − s ̸∈ L, reject. 

3. Accept. 

m

v

Acceptance
radius
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The GPV Framework [GPV’08] 

Simplified Signsk,σ(msg) : 

1. m = H(msg) 

2. v ← GaussianSampler(sk, m, σ) 

3. Signature: s = m − v. 

Simplified VerifL=pk(msg, s) : 

1. If ∥s∥ too big, reject. 

2. If m − s ̸∈ L, reject. 

3. Accept. 

Requirements 

Hard Forgery ⇒ σ small ⇒ sk has short vectors 

Hard to compute Easy to generate 
sk just from pk pk just from sk 

sk is called “a trapdoor” 
Generating trapdoors is an interesting challenge 

[HPSS’00, AP’09, MP’12, DLP’14, CGM’19, GL’20, 
CPSWX’20...] 
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Sampling over (structured) lattices 



Gaussian samplers: what are they!? 

Lattice Gaussian samplers = decoding + randomization 

CVP solvers 
Babai’s Round-off: 

u = B⌈B−1t⌋ 

Babai’s Nearest Plane: 
“adaptive” rounding on each R ebi 

Gaussian samplers 

Randomize the whole integer rounding 

Randomize each integer rounding 

There are also “in-betweens”, e.g. Ducas-Prest hybrid sampler (We’ll cover that soon) 
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Randomize rounding w/ discrete
Gaussians

(leaks the lattice basis)

[P’10] add Gaussian perturbation
to “smooth out” the lattice

(works!)

y← ⌈B−1t⌋r
means y←- DZn−B−1t,r

Outputs z = By

Peikert(B, t,σ, r)
x← σ ·N(0, 1)
y← ⌈B−1t− x⌋r
Outputs z = By.

Randomized Babai Rounding : Peikert’s approach 

Outputs z = B⌈B−1t⌋Without randomization (not a 

Gaussian sampler) 
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[P’10] add Gaussian perturbation
to “smooth out” the lattice

(works!)

Outputs z = B⌈B−1t⌋

Peikert(B, t,σ, r)
x← σ ·N(0, 1)
y← ⌈B−1t− x⌋r
Outputs z = By.

Randomized Babai Rounding : Peikert’s approach 

Without randomization (not a 

Gaussian sampler) 

y ← ⌈B−1t⌋r 
Randomize rounding w/ discrete means y ←- DZn−B−1t,r

Gaussians Outputs z = By
(leaks the lattice basis) 
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Outputs z = B⌈B−1t⌋

y← ⌈B−1t⌋r
means y←- DZn−B−1t,r

Outputs z = By

Randomized Babai Rounding : Peikert’s approach 

Without randomization (not a 

Gaussian sampler) 

Randomize rounding w/ discrete 
Gaussians 

(leaks the lattice basis) 

[P’10] add Gaussian perturbation 
to “smooth out” the lattice 

(works!) 

Peikert(B, t, σ, r) 
x ← σ · N(0, 1) 
y ← ⌈B−1t − x⌋r 

Outputs z = By. 
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Randomized NearestPlane: Klein’s sampler 

Without randomization 
(not a Gaussian sampler) 

Randomize rounding of 
each ti ∈ R 

(leaks Gram-Schmidt basis) 

On each Rebi, rescale 
adaptively 

s 

Klein(B, eB, t, si, r) 
v = 0, c = t 
for i = dim(B) to 1: 
ti = 

l 
⟨c, ebi⟩ 

∥ebi∥2 

k 

si 

v = v + tibi 

c = c − tibi 

Outputs v 
si := 

∥ebi∥ 
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Hybrid sampling 

Hybrid = Klein decoding + Peikert Example: R power-of-2 

randomization in dim ⩾ 1. cyclotomic 

Well-suited for module lattices: 
rank 2 R-module = rank 2d lattice. 

Hybrid(B, eBR, t, s1, s2) 
v = 0, c = t 
for i = 2 to 1: 
ti = Peikert 

� 
I, ⟨c,ebi⟩R 

⟨ebi ,ebi⟩R 
, si, r 

� 

v = v + tibi 

c = c − tibi 

Outputs v 

Operations in R instead of Z ⇒ need 
“good FFT domain” 
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Recap 

Quality Pros Cons 

Peikert s1(B) 
(largest sing. value) 

fast 
simple 

worst quality 

(lower security) 

Klein maxi ∥ ebi∥ 
(Gram-Schmidt) 

best quality 

(higher security) 

slower 
more involved 

Good tradeoffs when R
Hybrid s1(eB) has a good basis 
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Security considerations 

dWhen R = Z[x]/(x + 1), d = 2n, and for NTRU q-ary lattices, qualities are α 
√ 
q 

Asymptotic quality Concrete bitsecurity as a function of α, d = 512 

Sampler √ 
α q Best achievable α 

Peikert s1(B) O(d1/4√log d) 

Hybrid s1(eB) O(d1/8 log1/4 d) 

Klein maxi ∥ ebi∥ O(1) 

Klein

Hybrid
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Improving the Keygen 



Computing B

• Sample f,g Gaussians so that

∥(f,g)∥ ≈ √q

• Complete the basis: unimodularity
problem: Euclid+geometry

Achieve good quality

Sample (f,g)’s until:

• Falcon: max(∥eb1∥, ∥ebd+1∥) ≈ 1.17√q

• Hybrid: s1(eB) as close as possible to √q

Both metrics can be computed just with f,g

NTRU Trapdoors for signatures 

NTRU lattice LNTRU(a) Trapdoor " #" # 
f, g ∈ R → a := f−1g [q]" # h i a 

= 0 [q]u v 
−1 

Short basis B of LNTRU(a) 
with good quality wrt. a 

sampler. 

f g a 
? ? −1 = 0 [q] | {z }
=B 
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NTRU Trapdoors for signatures 

NTRU lattice LNTRU(a) 

f, g ∈ R → a := f−1g [q]" # h i a 
= 0 [q]u v 

−1 

Computing B Achieve good quality 

• Sample f, g Gaussians so that Sample (f, g)’s until: 
√ 

∥(f, g)∥ ≈ q • Falcon: max(∥eb1∥, ∥ebd+1∥) ≈ 1.17√ 
q 

• Hybrid: s1(eB) as close as possible to 
√ 
q 

• Complete the basis: unimodularity 
problem: Euclid+geometry Both metrics can be computed just with f, g 

Trapdoor " #" # 

Short basis B of LNTRU(a) 
with good quality wrt. a 

sampler. 

f g a 
? ? | {z } 

−1 = 0 [q] 

=B 
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Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

Into the key generation algorithm 

(naive) KeyGen: 

1) Do 
f, g ← DZd 

√ 
q, 

Until f inv. mod 
2d 

q And ∥f, g∥ ⩽ 1.17√ 
q; 

2) (F) quality check: ∥be 
d+1∥ ⩽ 1.17√ 

q ? 
else restart; 

4) bd+1 ← NTRUSolve(f, g, q); 
Compute all needed data; 
Output (pk, sk). 
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Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable
time

Into the key generation algorithm 

(naive) KeyGen: 

1) Do 
f, g ← DZd 

√ 
q, 

Until f inv. mod 
2d 

q And ∥f, g∥ ⩽ 1.17√ 
q; 

2) (F) quality check: ∥be 
d+1∥ ⩽ 1.17√ 

q ? • This already happens often in 

else restart; Falcon 

2-bis) (M) quality check: s1(Be) ⩽ 2.05√ 
q ? • Need *a lot* of tries to reach 2.05 

else restart; 

4) bd+1 ← NTRUSolve(f, g, q); And randomness is expensive. 
Compute all needed data; 
Output (pk, sk). 

17 



Into the key generation algorithm 

(naive) KeyGen: 

1) Do 
f, g ← DZd 

√ 
q, 2d Solution: amortize the rnd generation 

Until f inv. mod q And ∥f, g∥ ⩽ 1.17√ 
q; 

2) (F) quality check: ∥be 
d+1∥ ⩽ 1.17√ 

q ? 
else restart; 

2-bis) (M) quality check: s1(Be) ⩽ 2.05√ 
q ? 

else restart; 

4) bd+1 ← NTRUSolve(f, g, q); 
Compute all needed data; 
Output (pk, sk). 

+ Reuse randomness 

+ Galois automorphisms 

= “Free” blow-up of search-space 

, better trapdoors in reasonable time 
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3) [Testing] For f ∈ F,g ∈ G do
If quality-testing(f,g)

Output (pk(f,g), sk(f,g)).

Improved keygen
For the generation cost of 4m
Gaussians, search a space of size

Card(G) ·m4

Into the key generation algorithm 

KeyGen (Std. dev. σ of f and g, number of samples m, n, set G of Galois automorphisms) 

1) [Sampling] 

• Generate 2m Gaussians vectors of std. dev. 
′ ′′ σ/ 

√
2 and store them in two lists F , F . 

• Generate 2m Gaussians vectors of std. dev. 
′ ′′ σ/ 

√
2 and store them in two lists G , G . 

2) [Blowing up] 
′ ′′ ′ ′′• Pair two lists F ← F + F , G ← G + G 

• Let G acts on G: G ← 
S 

σ(G)σ∈G 
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Into the key generation algorithm 

KeyGen (Std. dev. σ of f and g, number of samples m, n, set G of Galois automorphisms) 

1) [Sampling] 

• Generate 2m Gaussians vectors of std. dev. √ 
σ/ 2 and store them in two lists F ′ , F ′′ . Improved keygen 

• Generate 2m Gaussians vectors of std. dev. For the generation cost of 4m 
′ ′′ σ/ 

√
2 and store them in two lists G , G . Gaussians, search a space of size 

2) [Blowing up] 4Card(G) · m 
′ ′′ ′ ′′• Pair two lists F ← F + F , G ← G + G 

• Let G acts on G: G ← 
S 

σ(G)σ∈G 

3) [Testing] For f ∈ F, g ∈ G do 
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Masking Mitaka 



Modeling side-channel adversaries 

t-probing attacker model [ISW03] 

• Adversary obtains t intermediate values of the 
computation 

• Successfully models practical noisy side-channel 
leakage [DDF14] 

Provable security: t-probing security 

• Any set of at most t intermediate variables is 
independent of the secret. 
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Precompute

[βi] := [
eb∗i

⟨ebi,ebi⟩R ]

MaskHybrid([B], [β1], [β2], [s1], [s2], [c])
[v2] := [0], [c2] := [c]
for i = 2 to 1:
[di] =

P2
j=1 PolyMult([ci,j], [βi,j])

[ti] = MaskPeikert(I, [di], [si], r)
[vi−1] = [vi] + PolyMult([ti], [bi])
[ci−1] = [ci] − PolyMult([ti], [bi])

Outputs Unmask([v0])

Signing operations outside the sampler
are not sensitive!

Protecting Mitaka from t-probing adversary: an overview 

Arithmetic masking of x ∈ R 

• (x0, . . . , xt−1) ← rand(R). 

• xt = x − (x0 + · · · + xt−1). 

• Secret-share x: [x] := (x0, . . . , xt). 

• Masked a ∈ R can be approximated by [a ′ ] 
C 

with some a ′ , C ∈ Z 

Computation on secret-shares 

• Linear operation is easy! zi = xi + yi 

• Non-linear operation with masked 
polynomial multiplication gadget PolyMult 
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2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)
• Coordinate-wise multiplication with the

standard ISW multiplier

ShareByShareGaussr([c])
for i = 0 to t:
zi ← DZ,ci,r/

√
t+1

Outputs (z0, . . . , zt)

PolyMult([a], [b])
[ba] = NTT([a])
[bb] = NTT([b])
for j = 0 to d− 1:
[bcj] = Mult([baj], [bbj])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

, No boolean–arithmetic share conversion in the online phase

Masking Peikert sampler 

1) [Offline] 

• Outputs continuous Gaussian samples in 
arithmetically masked form 
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Wrapping-up 



NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

MITAKA Smooth
Cylotomic rings

Simple  |  Efficient  |  Compact  |  Versatile  |  Maskable
Improved Keygen
(better private basis)

Hybrid Sampler
[DP?]  Simpler, efficient

Wrapping up 
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Thank you for your attention 
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