Mitaka

A Simpler, Parallelizable, Maskable Variant of Falcon

@ NTT

Thomas Espitau, Akira Takahashi, AARHUS

Mehdi Tibouchi, Alexandre Wallet UNIVERSITET
P4

NIST 3rd Workshop : Vd

Lattice signatures

Lattice-based signatures in NIST’s call

Two finalists are based on structured lattices:

FALCON CRYSTALS-DILITHIUM
“Hash-and-sign” in lattices [GPV'08] Fiat-Shamir “with abort” [Lyul2]
+ NTRU trapdoors [DLP'14] + module lattices
v/ compact, fast X larger bandwdith
X restricted parameter set, quite v large range of parameter sets,
hard to implement and protect easier to implement and protect
against side-channels against side-channels

Lattice-based signatures in NIST’s call

Two finalists are based on structured lattices:

Introducing: [Mitaka |
trying to reach best of both worlds

v/ compact, fast v/ easier to implement and protect
against side-channels
v large range of parameters sets

Rationale of Falcon

NTRU lattices
Compactitrapdoors NTRU lattices: free rank 2 modules

NT DLP+14]

over cyclotomic rings

Falcon Power-of-two Quasi-linear thanks to the ring but
"""" Cylotomic rings

“ Efficient GPV ”

= Few parameter sets

= Complicated implementation

= Complicated masking
FFO Sampler

(recursive Klein on Ring)

[DP16]

NTRU lattices Security | Dimension 512

140

® Quantum @ Classical

Falcon Y. Power-of-two
Cylotomic rings

“Efficient GPV "

FFO Sampler

(recursive Klein on Ring) 70
[DP16]

NTRU lattices

Compact trapdoors

NTRUSign+[DLP14]

Power-of-two
Cylotomic rings

Hybrid Sampler

[pp?] Simpler, efficient

Towards Mitaka

Security | Dimension 512

140
® Quantum @ Classical

70

Towards Mitaka

Improved Keygen
(better private basis)

\

NTRU lattices

Compact trapdoors

NTRUSign+[DLP14]

Power-of-two
Cylotomic rings

Hybrid Sampler

[pp?] Simpler, efficient

Security | Dimension 512

140
® Quantum @ Classical

70

Improved Keygen

(better private basis) \ NTRU lattices Security
Compact trapdoors
NTRUSign+[@512 @648 @ 768 @ 864 972 1024
: 250
' 200
Smooth
Cylotomic rings
150\ \
100 \
Hybrid Sampler
[op?] Simpler, efficient 1.0 15 20 25 3.0

Improved Keygen

(better private basis) \ NTRU lattices Security
Compact trapdoors
NTRUSign+[A @512 @648 @ 768 @ 864 972 1024
: 250
' 200
Smooth
Cylotomic rings
150\ \
100 \
Hybrid Sampler
[op?] Simpler, efficient 1.0 15 20 25 3.0

Hash-and-sign over lattices

The GPV Framework [GPV’08]

Simplified Signg, ,(msg) : "Good basis” sk of £, bad basis pk
1. m = H(msg)
[}
2. v « GaussianSampler(sk, m, o) : é °
o
3. Signature: s=m —v. .""5‘~
L] '¢' Vv ~s‘
Simplified Verif;_p(msg, s) : s R e
Acceptance p k
. = mx® '
1. If ||s|| too big, reject. taclls . .,
. . .
A . ,
2. Ifm—s¢L, reject. K. -t
° S —id
3. Accept. L 4 °
[]
°
[]

The GPV Framework [GPV’08]

Simplified Signg, ,(msg) :

Requirements

L. m = H(msg) Hard Forgery = o small = sk has short vectors
. [ler(sk

2% %= CeERIRE I 2 ELS 6k ©) Hard to compute Easy to generate

3. Signature: s =m —v. sk just from pk pk just from sk

Simplified Verifg_pk(msg,s) :

sk is called “a trapdoor”

L. If |Is|| too big, reject. Generating trapdoors is an interesting challenge
, , s , , »
2 Ifm—s 9.1 £, reject. [HPSS'00, AP'09, MP’12, DLP'14, CGM'19, GL 20,
CPSWX'20...]

3. Accept.

Sampling over (structured) lattices

Gaussian samplers: what are they!?

Lattice Gaussian samplers = decoding + randomization

CVP solvers Gaussian samplers
Babai's Round-off:

u=B[B 't Randomize the whole integer rounding

Babai's Nearest Plane:

“adaptive” rounding on each Rli Randomize each integer rounding

There are also “in-betweens”, e.g. Ducas-Prest hybrid sampler (We'll cover that soon)

Randomized Babai Rounding : Peikert’s approach

_ =il
Without randomization (not a Outputs z = B[B™"t]

Gaussian sampler)

10

Randomized Babai Rounding : Peikert’s approach

Without randomization (not a

Gaussian sampler)

y < [B7t];
Randomize rounding w/ discrete means y <> Dyn_ g 10,
Gaussians

Outputs z = By
(leaks the lattice basis)

10

Without randomization (not a

Gaussian sampler)

Randomize rounding w/ discrete
Gaussians
(leaks the lattice basis)

[P'10] add Gaussian perturbation
to “smooth out” the lattice
(works!)

Randomized Babai Rounding : Peikert’s approach

Peikert(B, t, 0, 1)
x <+ o0-N(0,1)

y+ [B7lt—x|,
Outputs z = By.

10

Without randomization

(not a Gaussian sampler)

Randomize rounding of
eacht; € R
(leaks Gram-Schmidt basis)

On each Rgi, rescale
adaptively
s

Si ¢

by

Randomized NearestPlane: Klein’s sampler

Klein(B, B, t, $i,T)
v=0,c=t
for i = dim(B) to 1:

V=V-+ tibi
c=c—tib;
Outputs v

11

Hybrid sampling

Hybrid = Klein decoding + Peikert Example: R power-of-2
randomization in dim > 1. cyclotomic

Well-suited for module lattices:

Hybrid(B, B+, t, 51, s
rank 2 R-module = rank 2d lattice. ybrid(B, Bz, t. 51, 52)

v=0,c=t
Klein Hybrid fori=2to I: &
t = Peikert(l, dehe si,r)
v=v-+tib;

c=c—tib;

Outputs v

decoding in 2d decoding in rank 2 Operations in R instead of Z = need
randomization in 7Z randomization in R “good FFT domain”

12

Quality Pros Cons
Peikert s1(B) fast worst quality
(largest sing. value) simple (lower security)
Klein max; Hb1” best quality slower
(Gram—Schmidt) (higher security) more involved

] - Good tradeoffs when R
Hybrid s1(B) has a good basis

13

Security considerations

When R = Z[x]/(x¢ 4+ 1), d = 2™, and for NTRU g-ary lattices, qualities are o/q

Asymptotic quality Concrete bitsecurity as a function of «, d =512

Sampler o /q Best achievable o il ® o @ Clessioat
130 8 'é’;\KIein
Peikert s1(B) 0O(dY*y/Togd) N

Hybrid s1(B) 0(d'/8log!* d)

~ Hybrid

Klein max; ||bi| O(1) N

14

Improving the Keygen

NTRU Trapdoors for signatures

NTRU lattice LyTru(a) Trapdoor
f,ge R —a:=f"g[q] Short basis B of Lytrul(a) [: g] [a]
[a with good quality wrt. a e =1 =0ldl
u v] 1 = [q] ~——
- sampler. =B

16

NTRU Trapdoors for signatures

NTRU lattice LyTru(a) Trapdoor
f,ge R — a:=f"g[q] Short basis B of Lytrul(a) [: g] [a]
[a with good quality wrt. a e =1]=0lq]
u v } =0 [q] —_——
-1 sampler. =B
Computing B Achieve good quality

= Sample f, g Gaussians so that Satpll (o g vl

I(F,)| ~ /3 = Falcon: max(||bi|, ||bat1]) = 1.17,/q

= Hybrid: sl(é) as close as possible to /q
= Complete the basis: unimodularity

problem: Euclid+geometry Both metrics can be computed just with f, g

16

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g < DZd,\/g
Until f inv. mod q And ||f, g|| < 1.17,/q;

2) (F) quality check: ||bai1| < 1.17,/q?
else restart;

4) bgq+1 < NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g < DZd,\/g
Until f inv. mod q And ||f, g|| < 1.17,/q;

2) (F) quality check: ||bai1| < 1.17,/q?
else restart;

4) bgq+1 < NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g < DZd,\/g
Until f inv. mod q And ||f, g|| < 1.17,/q;

2) (F) quality check: ||bai1| < 1.17,/q?
else restart;

2-bis) (M) quality check: s;1(B) < 2.05,/q ?
else restart;

4) bg+1 < NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g < DZd,\/g
Until f inv. mod q And ||f, g|| < 1.17,/q;

2) (F) quality check: ||Ed+1|\ <117,/q7 = This already happens often in
else restart; Falcon
2-bis) (M) quality check: s1(B) € 2.05,/q7? = Need *a lot* of tries to reach 2.05

else restart;

4) bg+1 < NTRUSolve(f, g, q); And randomness is expensive.
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g < DZd,\/g
Until f inv. mod q And ||f, g|| < 1.17,/q;

Solution: amortize the rnd generation

B + Reuse randomness
2) (F) quality check: ||b <1.17 ?
) (F)a V LI v + Galois automorphisms
else restart;

2-bis) (M) quality check: s,(B) < 2.05,/q ? = A b of szzidn gy

else restart;) .
© better trapdoors in reasonable time

4) bg+1 < NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

KeyGen (Std. dev. o of f and g, number of samples m, n, set & of Galois automorphisms)

1) [Sampling]
= Generate 2m Gaussians vectors of std. dev.
0/v/2 and store them in two lists F/, F”.
= Generate 2m Gaussians vectors of std. dev.
0/v/2 and store them in two lists G/, G”.
2) [Blowing up]

= Pairtwolists F« F +F' G+ G'+G”
= Let & acts on G: G < (J,cp 0(G)

18

Into the key generation algorithm

KeyGen (Std. dev. o of f and g, number of samples m, n, set & of Galois automorphisms)

1) [Sampling]
= Generate 2m Gaussians vectors of std. dev.
0/v/2 and store them in two lists F/, F”.

= Generate 2m Gaussians vectors of std. dev.
0/v/2 and store them in two lists G/, G”.

2) [Blowing up]
= Pairtwolists F« F +F' G+ G'+G”
= Let & acts on G: G < (J,cp 0(G)

3) [Testing] For f € F,g € G do
If quality-testing(f, g)

Output (pk(f, g), sk(f, g)).
18

Into the key generation algorithm

KeyGen (Std. dev. o of f and g, number of samples m, n, set & of Galois automorphisms)

1) [Sampling]
= Generate 2m Gaussians vectors of std. dev.
0/+/2 and store them in two lists F/, F”. Improved keygen
= Generate 2m Gaussians vectors of std. dev. For the generation cost of 4m
0/+/2 and store them in two lists G/, G”. Gaussians, search a space of size
2) [Blowing up] Card(6) - m*

= Pairtwolists F« F +F' G+ G'+G”
= Let & acts on G: G < (J,cp 0(G)

3) [Testing] For f € F,g € G do
If quality-testing(f, g)

Output (pk(f, g), sk(f, g)).
18

Masking Mitaka

Modeling side-channel adversaries

t-probing attacker model [ISWO03]

= Adversary obtains t intermediate values of the
computation

= Successfully models practical noisy side-channel §
leakage [DDF14]
Provable security: t-probing security

= Any set of at most t intermediate variables is
independent of the secret.

20

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x € R
= (xg,...,Xt_1) < rand(R).
= xg=x—(Xo+ -+ x¢_1).
= Secret-share x: [x] := (xo,. .., Xt).

[a’]

» Masked a € R can be approximated by ~~
with some a’,C € Z

Computation on secret-shares
= Linear operation is easy! z; = x; + yi

= Non-linear operation with masked
polynomial multiplication gadget PolyMult
21

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x € R

= (xg,...,Xt_1) < rand(R).

= xg=x—(Xo+ -+ x¢_1).

= Secret-share x: [x] := (xo,. .., Xt).

= Masked a € R can be approximated by [a]
with some a’,C € Z

Computation on secret-shares

= Linear operation is easy! z; = x; + yi

= Non-linear operation with masked
polynomial multiplication gadget PolyMult

Precompute

Bil =1

<Ei,brfi>m]
MaskHybrid([B
[vo] := [0], [Cz] = [CJ
fori=2to 1:
[di] = °2_,; PolyMult([cs 51, [B1,51)
[t;] = MaskPeikert(l, [di], [si], 1)
[vi_1] = [vi] + PolyMult([t;], [bi])
[ci—1] = [ei] — PolyMult([ti], [bi])
Outputs Unmask([vg])

1, [B2], [s4], [s2], [€])

21

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x € R

= (xg,...,Xt_1) < rand(R).

= xg=x—(Xo+ -+ x¢_1).

= Secret-share x: [x] := (xo,. .., Xt).

= Masked a € R can be approximated by [a]
with some a’,C € Z

Computation on secret-shares

= Linear operation is easy! z; = x; + yi

= Non-linear operation with masked
polynomial multiplication gadget PolyMult

Precompute

Bil =1

<Ei,brfi>m]
MaskHybrid([B
[vo] := [0], [Cz] = [CJ
fori=2to 1:
[di] = °2_,; PolyMult([cs 51, [B1,51)
[t;] = MaskPeikert(l, [di], [si], 1)
[vi_1] = [vi] + PolyMult([t;], [bi])
[ci—1] = [ei] — PolyMult([ti], [bi])
Outputs Unmask([vg])

1, [B2], [s4], [s2], [€])

Signing operations outside the sampler

are not sensitive!
21

Masking Peikert sampler

1) [Offline]

= Qutputs continuous Gaussian samples in
arithmetically masked form

22

Masking Peikert sampler

1) [Offline] ShareByShareGauss, ([c])

= Qutputs continuous Gaussian samples in fori=0to t:

arithmetically masked form zi < Dy /it

2) [Online] Outputs (zo, ..., z¢)

= Generate discrete Gaussian samples
share-by-share on each random share c; of
lc] = (co,...,ct).

22

Masking Peikert sampler

1) [Offline] ShareByShareGauss, ([c])
= Qutputs continuous Gaussian samples in fori=0to t:
arithmetically masked form zi < Dy /it
2) [Online] Outputs (zo, ..., z¢)
= Generate discrete Gaussian samples PolyMult([a], [b])
share-by-share on each random share c; of [@ = NTT([a])
[e] = (co, ..., ct). [b6] = NTT([b])
3) [Polynomial multiplication] forj=0tod—1:
= NTT/FFT on arithmetic shares (linear op.) [c5] = Mult([aj], [Bj])
[C] = INTT([E()], soop Edfl])

= Coordinate-wise multiplication with the
standard ISW multiplier Outputs [c]

22

Masking Peikert sampler

1) [Offline] ShareByShareGauss, ([c])
= Qutputs continuous Gaussian samples in fori=0to t:
arithmetically masked form zi < Dy /it
2) [Online] Outputs (zo, ..., z¢)
= Generate discrete Gaussian samples PolyMult([a], [b])
share-by-share on each random share c; of [@ = NTT([a])
[e] = (co, ..., ct). [b6] = NTT([b])
3) [Polynomial multiplication] forj=0tod—1:
= NTT/FFT on arithmetic shares (linear op.) [c5] = Mult([aj], [Bj])
[C] = INTT([E()], soop Edfl])

= Coordinate-wise multiplication with the
standard ISW multiplier Outputs [c]

22

Masking Peikert sampler

1) [Offline] ShareByShareGauss, ([c])
= Qutputs continuous Gaussian samples in fori=0to t:
arithmetically masked form zi < Dy /it
2) [Online] Outputs (zo, ..., z¢)
= Generate discrete Gaussian samples PolyMult([a], [b])
share-by-share on each random share c; of [@ = NTT([a])
[e] = (co, ..., ct). [b6] = NTT([b])
3) [Polynomial multiplication] forj=0tod—1:
= NTT/FFT on arithmetic shares (linear op.) [c5] = Mult([aj], [Bj])
[C] = INTT([E()], soop Edfl])

= Coordinate-wise multiplication with the
standard ISW multiplier Outputs [c]

©® No boolean—arithmetic share conversion in the online phase
22

Wrapping-up

Wrapping up

Improved Keygen

(better private basis) |\ NTRU lattices Simple | Efficient | Compact | Versatile | Maskable
Compact trapdoors
NTRUSign+[DLP14]
Security
@ 512 @ 6438 @ 768 @ 864 972 1024
250
Smooth

Cylotomic rings

0 200

Hybrld Sampler \]
[op?] Simpler, efficient \

Thank you for your attention

02 Kichijoji Mitaka

25

	Hash-and-sign over lattices
	Sampling over lattices
	Improving the keygen
	NTRU Lattices and their trapdoors
	Improvements of the Key generation algorithm
	Masking Mitaka
	Conclusion

