
Mitaka

A Simpler, Parallelizable, Maskable Variant of Falcon

Thomas Espitau, Akira Takahashi,
Mehdi Tibouchi, Alexandre Wallet

NIST 3rd Workshop

1

Lattice signatures

Lattice-based signatures in NIST’s call

Two finalists are based on structured lattices:

FALCON

“Hash-and-sign” in lattices [GPV’08]
+ NTRU trapdoors [DLP’14]

3 compact, fast

5 restricted parameter set, quite

hard to implement and protect
against side-channels

CRYSTALS-DILITHIUM

Fiat-Shamir “with abort” [Lyu12]
+ module lattices

5 larger bandwdith

3 large range of parameter sets,
easier to implement and protect
against side-channels

3

Lattice-based signatures in NIST’s call

Two finalists are based on structured lattices:

FALCON CRYSTALS-DILITHIUM

“Hash-and-sign” in lattices [GPV’08] Fiat-Shamir “with abort” [Lyu12]
+ NTRU trapdoors [DLP’14] + module lattices

Introducing: [Mitaka]
trying to reach best of both worlds

3 compact, fast 3 easier to implement and protect
against side-channels

3 large range of parameters sets

3

Rationale of Falcon

NTRU lattices
Compact trapdoors

 NTRUSign+[DLP+14]

FFO Sampler
(recursive Klein on Ring)

[DP16]

Falcon
“ Efficient GPV ”

Power-of-two
Cylotomic rings

NTRU lattices: free rank 2 modules

over cyclotomic rings

Quasi-linear thanks to the ring but
• Few parameter sets

• Complicated implementation

• Complicated masking

4

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

FFO Sampler
(recursive Klein on Ring)

[DP16]

Falcon
“ Efficient GPV ”

Power-of-two
Cylotomic rings

Towards Mitaka

5

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
[DP?] Simpler, efficient

MITAKA

(not yet)

Power-of-two
Cylotomic rings

Towards Mitaka

5

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

MITAKA Power-of-two
Cylotomic rings

Improved Keygen
(better private basis)

Hybrid Sampler
[DP?] Simpler, efficient

Towards Mitaka

5

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

MITAKA Smooth
Cylotomic rings

Improved Keygen
(better private basis)

Hybrid Sampler
[DP?] Simpler, efficient

Towards Mitaka

5

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

MITAKA Smooth
Cylotomic rings

Improved Keygen
(better private basis)

Hybrid Sampler
[DP?] Simpler, efficient

Towards Mitaka

5

Hash-and-sign over lattices

The GPV Framework [GPV’08]

Simplified Signsk,σ(msg) : ”Good basis” sk of L, bad basis pk

1. m = H(msg)

2. v ← GaussianSampler(sk, m, σ)

3. Signature: s = m − v.

Simplified VerifL=pk(msg, s) :

1. If ∥s∥ too big, reject.

2. If m − s ̸∈ L, reject.

3. Accept.

m

v

Acceptance
radius

7

The GPV Framework [GPV’08]

Simplified Signsk,σ(msg) :

1. m = H(msg)

2. v ← GaussianSampler(sk, m, σ)

3. Signature: s = m − v.

Simplified VerifL=pk(msg, s) :

1. If ∥s∥ too big, reject.

2. If m − s ̸∈ L, reject.

3. Accept.

Requirements

Hard Forgery ⇒ σ small ⇒ sk has short vectors

Hard to compute Easy to generate
sk just from pk pk just from sk

sk is called “a trapdoor”
Generating trapdoors is an interesting challenge

[HPSS’00, AP’09, MP’12, DLP’14, CGM’19, GL’20,
CPSWX’20...]

7

Sampling over (structured) lattices

Gaussian samplers: what are they!?

Lattice Gaussian samplers = decoding + randomization

CVP solvers
Babai’s Round-off:

u = B⌈B−1t⌋

Babai’s Nearest Plane:
“adaptive” rounding on each R ebi

Gaussian samplers

Randomize the whole integer rounding

Randomize each integer rounding

There are also “in-betweens”, e.g. Ducas-Prest hybrid sampler (We’ll cover that soon)

9

Randomize rounding w/ discrete
Gaussians

(leaks the lattice basis)

[P’10] add Gaussian perturbation
to “smooth out” the lattice

(works!)

y← ⌈B−1t⌋r
means y←- DZn−B−1t,r

Outputs z = By

Peikert(B, t,σ, r)
x← σ ·N(0, 1)
y← ⌈B−1t− x⌋r
Outputs z = By.

Randomized Babai Rounding : Peikert’s approach

Outputs z = B⌈B−1t⌋Without randomization (not a

Gaussian sampler)

10

[P’10] add Gaussian perturbation
to “smooth out” the lattice

(works!)

Outputs z = B⌈B−1t⌋

Peikert(B, t,σ, r)
x← σ ·N(0, 1)
y← ⌈B−1t− x⌋r
Outputs z = By.

Randomized Babai Rounding : Peikert’s approach

Without randomization (not a

Gaussian sampler)

y ← ⌈B−1t⌋r
Randomize rounding w/ discrete means y ←- DZn−B−1t,r

Gaussians Outputs z = By
(leaks the lattice basis)

10

Outputs z = B⌈B−1t⌋

y← ⌈B−1t⌋r
means y←- DZn−B−1t,r

Outputs z = By

Randomized Babai Rounding : Peikert’s approach

Without randomization (not a

Gaussian sampler)

Randomize rounding w/ discrete
Gaussians

(leaks the lattice basis)

[P’10] add Gaussian perturbation
to “smooth out” the lattice

(works!)

Peikert(B, t, σ, r)
x ← σ · N(0, 1)
y ← ⌈B−1t − x⌋r

Outputs z = By.
10

Randomized NearestPlane: Klein’s sampler

Without randomization
(not a Gaussian sampler)

Randomize rounding of
each ti ∈ R

(leaks Gram-Schmidt basis)

On each Rebi, rescale
adaptively

s

Klein(B, eB, t, si, r)
v = 0, c = t
for i = dim(B) to 1:
ti =

l
⟨c, ebi⟩

∥ebi∥2

k

si

v = v + tibi

c = c − tibi

Outputs v
si :=

∥ebi∥
11

Hybrid sampling

Hybrid = Klein decoding + Peikert Example: R power-of-2

randomization in dim ⩾ 1. cyclotomic

Well-suited for module lattices:
rank 2 R-module = rank 2d lattice.

Hybrid(B, eBR, t, s1, s2)
v = 0, c = t
for i = 2 to 1:
ti = Peikert

�
I, ⟨c,ebi⟩R

⟨ebi ,ebi⟩R
, si, r

�

v = v + tibi

c = c − tibi

Outputs v

Operations in R instead of Z ⇒ need
“good FFT domain”

12

Recap

Quality Pros Cons

Peikert s1(B)
(largest sing. value)

fast
simple

worst quality

(lower security)

Klein maxi ∥ ebi∥
(Gram-Schmidt)

best quality

(higher security)

slower
more involved

Good tradeoffs when R
Hybrid s1(eB) has a good basis

13

Security considerations

dWhen R = Z[x]/(x + 1), d = 2n, and for NTRU q-ary lattices, qualities are α
√
q

Asymptotic quality Concrete bitsecurity as a function of α, d = 512

Sampler √
α q Best achievable α

Peikert s1(B) O(d1/4√log d)

Hybrid s1(eB) O(d1/8 log1/4 d)

Klein maxi ∥ ebi∥ O(1)

Klein

Hybrid

14

Improving the Keygen

Computing B

• Sample f,g Gaussians so that

∥(f,g)∥ ≈ √q

• Complete the basis: unimodularity
problem: Euclid+geometry

Achieve good quality

Sample (f,g)’s until:

• Falcon: max(∥eb1∥, ∥ebd+1∥) ≈ 1.17√q

• Hybrid: s1(eB) as close as possible to √q

Both metrics can be computed just with f,g

NTRU Trapdoors for signatures

NTRU lattice LNTRU(a) Trapdoor " #" #
f, g ∈ R → a := f−1g [q]" # h i a

= 0 [q]u v
−1

Short basis B of LNTRU(a)
with good quality wrt. a

sampler.

f g a
? ? −1 = 0 [q] | {z }
=B

16

NTRU Trapdoors for signatures

NTRU lattice LNTRU(a)

f, g ∈ R → a := f−1g [q]" # h i a
= 0 [q]u v

−1

Computing B Achieve good quality

• Sample f, g Gaussians so that Sample (f, g)’s until:
√

∥(f, g)∥ ≈ q • Falcon: max(∥eb1∥, ∥ebd+1∥) ≈ 1.17√
q

• Hybrid: s1(eB) as close as possible to
√
q

• Complete the basis: unimodularity
problem: Euclid+geometry Both metrics can be computed just with f, g

Trapdoor " #" #

Short basis B of LNTRU(a)
with good quality wrt. a

sampler.

f g a
? ? | {z }

−1 = 0 [q]

=B

16

Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g ← DZd

√
q,

Until f inv. mod
2d

q And ∥f, g∥ ⩽ 1.17√
q;

2) (F) quality check: ∥be
d+1∥ ⩽ 1.17√

q ?
else restart;

4) bd+1 ← NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g ← DZd

√
q,

Until f inv. mod
2d

q And ∥f, g∥ ⩽ 1.17√
q;

2) (F) quality check: ∥be
d+1∥ ⩽ 1.17√

q ?
else restart;

4) bd+1 ← NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g ← DZd

√
q,

Until f inv. mod
2d

q And ∥f, g∥ ⩽ 1.17√
q;

2) (F) quality check: ∥be
d+1∥ ⩽ 1.17√

q ?
else restart;

2-bis) (M) quality check: s1(Be) ⩽ 2.05√
q ?

else restart;

4) bd+1 ← NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

17

Solution: amortize the rnd generation

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable
time

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g ← DZd

√
q,

Until f inv. mod
2d

q And ∥f, g∥ ⩽ 1.17√
q;

2) (F) quality check: ∥be
d+1∥ ⩽ 1.17√

q ? • This already happens often in

else restart; Falcon

2-bis) (M) quality check: s1(Be) ⩽ 2.05√
q ? • Need *a lot* of tries to reach 2.05

else restart;

4) bd+1 ← NTRUSolve(f, g, q); And randomness is expensive.
Compute all needed data;
Output (pk, sk).

17

Into the key generation algorithm

(naive) KeyGen:

1) Do
f, g ← DZd

√
q, 2d Solution: amortize the rnd generation

Until f inv. mod q And ∥f, g∥ ⩽ 1.17√
q;

2) (F) quality check: ∥be
d+1∥ ⩽ 1.17√

q ?
else restart;

2-bis) (M) quality check: s1(Be) ⩽ 2.05√
q ?

else restart;

4) bd+1 ← NTRUSolve(f, g, q);
Compute all needed data;
Output (pk, sk).

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

17

3) [Testing] For f ∈ F,g ∈ G do
If quality-testing(f,g)

Output (pk(f,g), sk(f,g)).

Improved keygen
For the generation cost of 4m
Gaussians, search a space of size

Card(G) ·m4

Into the key generation algorithm

KeyGen (Std. dev. σ of f and g, number of samples m, n, set G of Galois automorphisms)

1) [Sampling]

• Generate 2m Gaussians vectors of std. dev.
′ ′′ σ/

√
2 and store them in two lists F , F .

• Generate 2m Gaussians vectors of std. dev.
′ ′′ σ/

√
2 and store them in two lists G , G .

2) [Blowing up]
′ ′′ ′ ′′• Pair two lists F ← F + F , G ← G + G

• Let G acts on G: G ←
S

σ(G)σ∈G

18

Improved keygen
For the generation cost of 4m
Gaussians, search a space of size

Card(G) ·m4

Into the key generation algorithm

KeyGen (Std. dev. σ of f and g, number of samples m, n, set G of Galois automorphisms)

1) [Sampling]

• Generate 2m Gaussians vectors of std. dev.
′ ′′ σ/

√
2 and store them in two lists F , F .

• Generate 2m Gaussians vectors of std. dev.
′ ′′ σ/

√
2 and store them in two lists G , G .

2) [Blowing up]
′ ′′ ′ ′′• Pair two lists F ← F + F , G ← G + G

• Let G acts on G: G ←
S

σ(G)σ∈G

3) [Testing] For f ∈ F, g ∈ G do
If quality-testing(f, g)

Output (pk(f, g), sk(f, g)).
18

Into the key generation algorithm

KeyGen (Std. dev. σ of f and g, number of samples m, n, set G of Galois automorphisms)

1) [Sampling]

• Generate 2m Gaussians vectors of std. dev. √
σ/ 2 and store them in two lists F ′ , F ′′ . Improved keygen

• Generate 2m Gaussians vectors of std. dev. For the generation cost of 4m
′ ′′ σ/

√
2 and store them in two lists G , G . Gaussians, search a space of size

2) [Blowing up] 4Card(G) · m
′ ′′ ′ ′′• Pair two lists F ← F + F , G ← G + G

• Let G acts on G: G ←
S

σ(G)σ∈G

3) [Testing] For f ∈ F, g ∈ G do
If quality-testing(f, g)

Output (pk(f, g), sk(f, g)).
18

Masking Mitaka

Modeling side-channel adversaries

t-probing attacker model [ISW03]

• Adversary obtains t intermediate values of the
computation

• Successfully models practical noisy side-channel
leakage [DDF14]

Provable security: t-probing security

• Any set of at most t intermediate variables is
independent of the secret.

20

Precompute

[βi] := [
eb∗i

⟨ebi,ebi⟩R]

MaskHybrid([B], [β1], [β2], [s1], [s2], [c])
[v2] := [0], [c2] := [c]
for i = 2 to 1:
[di] =

P2
j=1 PolyMult([ci,j], [βi,j])

[ti] = MaskPeikert(I, [di], [si], r)
[vi−1] = [vi] + PolyMult([ti], [bi])
[ci−1] = [ci] − PolyMult([ti], [bi])

Outputs Unmask([v0])

Signing operations outside the sampler
are not sensitive!

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x ∈ R

• (x0, . . . , xt−1) ← rand(R).

• xt = x − (x0 + · · · + xt−1).

• Secret-share x: [x] := (x0, . . . , xt).

• Masked a ∈ R can be approximated by [a ′]
C

with some a ′ , C ∈ Z

Computation on secret-shares

• Linear operation is easy! zi = xi + yi

• Non-linear operation with masked
polynomial multiplication gadget PolyMult

21

Signing operations outside the sampler
are not sensitive!

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x ∈ R

• (x0, . . . , xt−1) ← rand(R).

• xt = x − (x0 + · · · + xt−1).

• Secret-share x: [x] := (x0, . . . , xt).

• Masked a ∈ R can be approximated by [a ′]
C

with some a ′ , C ∈ Z

Precompute
eb∗

[βi] := [i]
⟨ebi,ebi⟩R

MaskHybrid([B], [β1], [β2], [s1], [s2], [c])
[v2] := [0], [c2] := [c]
for i = 2 to 1:
[di] =

P
j
2
=1 PolyMult([ci,j], [βi,j])

[ti] = MaskPeikert(I, [di], [si], r)
[vi−1] = [vi] + PolyMult([ti], [bi])
[ci−1] = [ci] − PolyMult([ti], [bi])

Outputs Unmask([v0])

Computation on secret-shares

• Linear operation is easy! zi = xi + yi

• Non-linear operation with masked
polynomial multiplication gadget PolyMult

21

Protecting Mitaka from t-probing adversary: an overview

Arithmetic masking of x ∈ R

• (x0, . . . , xt−1) ← rand(R).

• xt = x − (x0 + · · · + xt−1).

• Secret-share x: [x] := (x0, . . . , xt).

• Masked a ∈ R can be approximated by [a ′]
C

with some a ′ , C ∈ Z

Precompute
eb∗

[βi] := [i]
⟨ebi,ebi⟩R

Computation on secret-shares

• Linear operation is easy! zi = xi + yi

• Non-linear operation with masked
polynomial multiplication gadget PolyMult

MaskHybrid([B], [β1], [β2], [s1], [s2], [c])
[v2] := [0], [c2] := [c]
for i = 2 to 1:
[di] =

P
j
2
=1 PolyMult([ci,j], [βi,j])

[ti] = MaskPeikert(I, [di], [si], r)
[vi−1] = [vi] + PolyMult([ti], [bi])
[ci−1] = [ci] − PolyMult([ti], [bi])

Outputs Unmask([v0])

Signing operations outside the sampler
are not sensitive!

21

2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)
• Coordinate-wise multiplication with the

standard ISW multiplier

ShareByShareGaussr([c])
for i = 0 to t:
zi ← DZ,ci,r/

√
t+1

Outputs (z0, . . . , zt)

PolyMult([a], [b])
[ba] = NTT([a])
[bb] = NTT([b])
for j = 0 to d− 1:
[bcj] = Mult([baj], [bbj])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

, No boolean–arithmetic share conversion in the online phase

Masking Peikert sampler

1) [Offline]

• Outputs continuous Gaussian samples in
arithmetically masked form

22

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)
• Coordinate-wise multiplication with the

standard ISW multiplier

PolyMult([a], [b])
[ba] = NTT([a])
[bb] = NTT([b])
for j = 0 to d− 1:
[bcj] = Mult([baj], [bbj])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

, No boolean–arithmetic share conversion in the online phase

Masking Peikert sampler

1) [Offline]

• Outputs continuous Gaussian samples in
arithmetically masked form

2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

ShareByShareGaussr([c])
for i = 0 to t:

√zi ← DZ,ci,r/ t+1

Outputs (z0, . . . , zt)

22

, No boolean–arithmetic share conversion in the online phase

b

Masking Peikert sampler

1) [Offline]

• Outputs continuous Gaussian samples in
arithmetically masked form

2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)

• Coordinate-wise multiplication with the
standard ISW multiplier

ShareByShareGaussr([c])
for i = 0 to t:

√zi ← DZ,ci,r/ t+1

Outputs (z0, . . . , zt)

PolyMult([a], [b])
[ab] = NTT([a])
[b] = NTT([b])
for j = 0 to d − 1:
[bcj] = Mult([abj], [bb

j])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

22

, No boolean–arithmetic share conversion in the online phase

b

Masking Peikert sampler

1) [Offline]

• Outputs continuous Gaussian samples in
arithmetically masked form

2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)

• Coordinate-wise multiplication with the
standard ISW multiplier

ShareByShareGaussr([c])
for i = 0 to t:

√zi ← DZ,ci,r/ t+1

Outputs (z0, . . . , zt)

PolyMult([a], [b])
[ab] = NTT([a])
[b] = NTT([b])
for j = 0 to d − 1:
[bcj] = Mult([abj], [bb

j])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

22

b

Masking Peikert sampler

1) [Offline]

• Outputs continuous Gaussian samples in
arithmetically masked form

2) [Online]

• Generate discrete Gaussian samples
share-by-share on each random share ci of
[c] = (c0, . . . , ct).

3) [Polynomial multiplication]

• NTT/FFT on arithmetic shares (linear op.)

• Coordinate-wise multiplication with the
standard ISW multiplier

ShareByShareGaussr([c])
for i = 0 to t:

√zi ← DZ,ci,r/ t+1

Outputs (z0, . . . , zt)

PolyMult([a], [b])
[ab] = NTT([a])
[b] = NTT([b])
for j = 0 to d − 1:
[bcj] = Mult([abj], [bb

j])

[c] := iNTT([bc0], . . . , [bcd−1])

Outputs [c]

, No boolean–arithmetic share conversion in the online phase
22

Wrapping-up

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

MITAKA Smooth
Cylotomic rings

Simple | Efficient | Compact | Versatile | Maskable
Improved Keygen
(better private basis)

Hybrid Sampler
[DP?] Simpler, efficient

Wrapping up

24

Thank you for your attention

25

	Hash-and-sign over lattices
	Sampling over lattices
	Improving the keygen
	NTRU Lattices and their trapdoors
	Improvements of the Key generation algorithm
	Masking Mitaka
	Conclusion

