MQDSS

Ming-Shing Chen ${ }^{1}$, Andreas Hülsing ${ }^{2}$, Joost Rijneveld ${ }^{3}$, Simona Samardjiska ${ }^{3}$, and Peter Schwabe ${ }^{3}$
${ }^{1}$ National Taiwan University / Academia Sinica, Taipei, Taiwan
${ }^{2}$ Technische Universiteit Eindhoven, Eindhoven, The Netherlands
${ }^{3}$ Radboud University, Nijmegen, The Netherlands
2019-08-23
Second NIST PQC Standardization Conference

In a nutshell..

- MQ-based 5-pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures

In a nutshell..

- MQ-based 5-pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures
- First proposed at ASIACRYPT 2016 [CHR $\left.{ }^{+} 16\right]$

In a nutshell..

- MQ-based 5-pass identification scheme
- Fiat-Shamir transform
- Loose reduction from (only!) $\mathcal{M Q}$ problem
- Security proof, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures
- First proposed at ASIACRYPT $2016\left[\mathrm{CHR}^{+} 16\right]$
- Changes in Second Round submission
- Reduction of number of rounds
- Added randomness in commitments
- More precise analysis of best attacks against $\mathcal{M Q}$

Fiat-Shamir transform

Fiat-Shamir transform

Fiat-Shamir transform

FS signature

```
Signer
com}\leftarrow\mp@subsup{\mathcal{P}}{0}{(sk)
ch}\leftarrowH(m,com
resp}\leftarrow\mp@subsup{\mathcal{P}}{1}{}(\mathrm{ (sk, com, ch)
output : }\sigma=(\mathrm{ com,resp)
```

\quadVerifier $\mathrm{ch} \leftarrow H(m, \mathrm{com})$ $b \leftarrow \mathrm{Vf}(\mathrm{pk}, \mathrm{com}, \mathrm{ch}$, resp $)$ output $: b$

Sakumoto-Shirai-Hiwatari 5-pass IDS [SSH11]

$$
\begin{aligned}
& \mathcal{P}:(\mathbf{F}, \mathbf{v}, \mathbf{s}) \quad \mathcal{V}:(\mathbf{F}, \mathbf{v}) \\
& \mathbf{r}_{0}, \mathbf{t}_{0} \leftarrow R \mathbb{F}_{q}^{n}, \mathbf{e}_{0} \leftarrow R \mathbb{F}_{q}^{m} \\
& \mathbf{r}_{1} \leftarrow \mathbf{s}-\mathbf{r}_{0} \\
& c_{0} \leftarrow \operatorname{Com}\left(\mathbf{r}_{0}, \mathbf{t}_{0}, \mathbf{e}_{0}\right) \\
& c_{1} \leftarrow \operatorname{Com}\left(\mathbf{r}_{1}, \mathbf{G}\left(\mathbf{t}_{0}, \mathbf{r}_{1}\right)+\mathbf{e}_{0}\right) \xrightarrow[\alpha]{\left(c_{0}, c_{1}\right)} \alpha \leftarrow_{R} \mathbb{F}_{q} \\
& \mathbf{t}_{1} \leftarrow \alpha \mathbf{r}_{0}-\mathbf{t}_{0} \\
& \mathbf{e}_{1} \leftarrow \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{0} \\
& \operatorname{resp}_{1}=\left(\mathbf{t}_{1}, \mathbf{e}_{1}\right) \\
& \mathrm{ch}_{2} \\
& \mathrm{ch}_{2} \leftarrow_{R}\{0,1\} \\
& \text { If } \mathrm{ch}_{2}=0 \text {, } \text { resp }_{2} \leftarrow \mathbf{r}_{0} \\
& \text { Else } \text { resp }_{2} \leftarrow \mathbf{r}_{1} \\
& \xrightarrow{\text { resp }_{2}} \\
& \text { If } \mathrm{ch}_{2}=0 \text {, Parse resp }{ }_{2}=\mathbf{r}_{0} \text {, check } \\
& c_{0} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{0}, \alpha \mathbf{r}_{0}-\mathbf{t}_{1}, \alpha \mathbf{F}\left(\mathbf{r}_{0}\right)-\mathbf{e}_{1}\right) \\
& \text { Else Parse resp }{ }_{2}=\mathbf{r}_{1} \text {, check } \\
& c_{1} \stackrel{?}{=} \operatorname{Com}\left(\mathbf{r}_{1}, \alpha\left(\mathbf{v}-\mathbf{F}\left(\mathbf{r}_{1}\right)\right)-\mathbf{G}\left(\mathbf{t}_{1}, \mathbf{r}_{1}\right)-\mathbf{e}_{1}\right)
\end{aligned}
$$

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}, \mathbf{s} \in \mathbb{F}_{q}^{n} \quad \Rightarrow \mathbf{s k}=\left(\mathcal{S}_{F}, \mathbf{s}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{v}=\mathbf{F}(\mathbf{s}) \quad \Rightarrow \mathbf{p k}=\left(\mathcal{S}_{F}, \mathbf{v}\right)$

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}, \mathbf{s} \in \mathbb{F}_{q}^{n} \quad \Rightarrow \mathbf{s k}=\left(\mathcal{S}_{F}, \mathbf{s}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{v}=\mathbf{F}(\mathbf{s}) \quad \Rightarrow \mathbf{p k}=\left(\mathcal{S}_{F}, \mathbf{v}\right)$
- Signing
- Sign randomized digest D of message M
- Perform r parallel rounds of transformed IDS

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}, \mathbf{s} \in \mathbb{F}_{q}^{n} \quad \Rightarrow \mathbf{s k}=\left(\mathcal{S}_{F}, \mathbf{s}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{v}=\mathbf{F}(\mathbf{s}) \quad \Rightarrow \mathbf{p k}=\left(\mathcal{S}_{F}, \mathbf{v}\right)$
- Signing
- Sign randomized digest D of message M
- Perform r parallel rounds of transformed IDS
- Verifying
- Reconstruct D, \mathbf{F}
- Reconstruct challenges
- Reconstruct commitments
- Check combined commitments hash

MQDSS

- Generate keys
- Sample seed $\mathcal{S}_{F} \in\{0,1\}^{k}, \mathbf{s} \in \mathbb{F}_{q}^{n} \quad \Rightarrow \mathbf{s k}=\left(\mathcal{S}_{F}, \mathbf{s}\right)$
- Expand \mathcal{S}_{F} to \mathbf{F}, compute $\mathbf{v}=\mathbf{F}(\mathbf{s}) \quad \Rightarrow \mathbf{p k}=\left(\mathcal{S}_{F}, \mathbf{v}\right)$
- Signing
- Sign randomized digest D of message M
- Perform r parallel rounds of transformed IDS
- Verifying
- Reconstruct D, \mathbf{F}
- Reconstruct challenges
- Reconstruct commitments
- Check combined commitments hash
- Parameters: n, m, q, r (and Com, Hash \& PRG)

Round 2 update: Parameter Sets

	Sec. cat.	q	n $(=m)$	r	pk (bytes)	sk (bytes)	Signature (bytes)
MQDSS-31-48	$1-2$	31	48	135	46	16	20854
(Round 1)				269	62	32	32882
MQDSS-31-64 (Round 1)	$3-4$	31	64	202	64	24	43728

Table: Round 1 parameters in black, Round 2 parameters in red.

- $q, n=m$ chosen using best attacks on $\mathcal{M Q}$
- q additionally chosen for fast arithmetic

Round 2 update: Parameter Sets

	Sec. cat.	q	n $(=m)$	r	pk (bytes)	sk (bytes)	Signature (bytes)
MQDSS-31-48	$1-2$	31	48	135	46	16	20854
(Round 1)				269	62	32	32882
MQDSS-31-64 (Round 1)	$3-4$	31	64	202	64	24	43728

Table: Round 1 parameters in black, Round 2 parameters in red.

- $q, n=m$ chosen using best attacks on $\mathcal{M Q}$
- q additionally chosen for fast arithmetic
- r chosen such that $2^{-\left(r \log \frac{2 q}{q+1}\right)}<2^{-k}$
- mistake in calculation in Round 1, chose k too large

Round 2 update: Commitments

- MQDSS uses hash for commitments - instantiated with SHAKE-256

Round 2 update: Commitments

- MQDSS uses hash for commitments - instantiated with SHAKE-256
- In Round 1 proof assumes statistically hiding commitments

Round 2 update: Commitments

- MQDSS uses hash for commitments - instantiated with SHAKE-256
- In Round 1 proof assumes statistically hiding commitments
- Requires a lot of randomness: $5 \times$ commitment length [Lei18]
- Round 1 MQDSS does not provide any (dedicated) randomness

Round 2 update: Commitments

- MQDSS uses hash for commitments - instantiated with SHAKE-256
- In Round 1 proof assumes statistically hiding commitments
- Requires a lot of randomness: $5 \times$ commitment length [Lei18]
- Round 1 MQDSS does not provide any (dedicated) randomness
- Round 2:
- Computationally hiding commitments suffices!
- Proof updated accordingly

Round 2 update: Commitments

- MQDSS uses hash for commitments - instantiated with SHAKE-256
- In Round 1 proof assumes statistically hiding commitments
- Requires a lot of randomness: $5 \times$ commitment length [Lei18]
- Round 1 MQDSS does not provide any (dedicated) randomness
- Round 2:
- Computationally hiding commitments suffices!
- Proof updated accordingly
- Still needs randomness ($2 \times$ commitment length [Lei18])
- \Rightarrow adds approx 4KB (10KB) to signature for MQDSS-31-48 (MQDSS-31-64)

Round 2 performance

- Reference implementation

	keygen	signing	verification
MQDSS-31-48	1192984	26630590	19840136
Round 1	1206730	52466398	38686506
MQDSS-31-64	2767384	85268712	62306098
Round 1	2806750	169298364	123239874

Table: Round 1 performance in black, Round 2 performance in red.

Round 2 performance

- Reference implementation

	keygen	signing	verification
MQDSS-31-48	1192984	26630590	19840136
Round 1	1206730	52466398	38686506
MQDSS-31-64	2767384	85268712	62306098
Round 1	2806750	169298364	123239874

Table: Round 1 performance in black, Round 2 performance in red.

- AVX2 implementation (only round 2)

	keygen	signing	verification
MQDSS-31-48	1074644	3816106	2551270
MQDSS-31-64	2491050	9047148	6132948

Round 2 update: More precise analysis of hardness of $\mathcal{M Q}$

- Best strategy: Algebraic techniques with exhaustive search
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]

Round 2 update: More precise analysis of hardness of $\mathcal{M Q}$

- Best strategy: Algebraic techniques with exhaustive search
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]
- Analyze both classically and using Grover
- Classical gates, quantum gates, circuit depth

Round 2 update: More precise analysis of hardness of $\mathcal{M Q}$

- Best strategy: Algebraic techniques with exhaustive search
- HybridF5 [BFS15], BooleanSolve [BFSS13], Crossbred [JV17]
- Analyze both classically and using Grover
- Classical gates, quantum gates, circuit depth
- minor changes in Round 2 - more precise analysis
- no influence to security of parameter sets

Recent attack

- August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2^{25} hash calls for MQDSS-31-48

Recent attack

- August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2^{95} hash calls for MQDSS-31-48
- Can be mitigated by $\approx 1.4 \times$ (number of rounds)

Recent attack

- August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2^{95} hash calls for MQDSS-31-48
- Can be mitigated by $\approx 1.4 \times$ (number of rounds)
- Proof still valid!
- Attack is result of not taking into account non-tightness of proof for choosing parameters

Recent attack

- August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2^{95} hash calls for MQDSS-31-48
- Can be mitigated by $\approx 1.4 \times$ (number of rounds)
- Proof still valid!
- Attack is result of not taking into account non-tightness of proof for choosing parameters
- New parameters after attack (estimate):

	Sec. cat.	q	n	r	pk	sk	Signature
MQDSS-31-48 (new)	$1-2$	31	48	184	46 B	16 B	28400 B
Round 1				269	62 B	32 B	32882 B
MQDSS-31-64 (new)	$3-4$	31	64	277	64 B	24 B	59928 B
Round 1				403	88 B	48 B	67800 B

Table: Round 1 parameters in black, New parameters (attack fixed) in red.

Conclusion

- Fiat-Shamir transform from $\mathcal{M Q}$-based 5-pass identification scheme
- Security proof in ROM, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures

Conclusion

- Fiat-Shamir transform from $\mathcal{M} \mathcal{Q}$-based 5-pass identification scheme
- Security proof in ROM, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures
- Main improvement in Round 2: Smaller signatures
- Even after recent attack \& added randomness in commitments

	Sec. cat.	q	n	r	pk	sk	Signature
MQDSS-31-48 (new)	$1-2$	31	48	184	46 B	16 B	28400 B
Round 1				269	62 B	32 B	32882 B
MQDSS-31-64 (new)	$3-4$	31	64	277	64 B	24 B	59928 B
Round 1				403	88 B	48 B	67800 B

Table: Round 1 parameters in black, New parameters (attack fixed) in red.

Conclusion

- Fiat-Shamir transform from $\mathcal{M Q}$-based 5-pass identification scheme
- Security proof in ROM, instead of typical 'break and tweak' in $\mathcal{M Q}$ cryptography
- Very small keys, big signatures
- Main improvement in Round 2: Smaller signatures
- Even after recent attack \& added randomness in commitments

	Sec. cat.	q	n	r	pk	sk	Signature
MQDSS-31-48 (new)	$1-2$	31	48	184	46 B	16 B	28400 B
Round 1				269	62 B	32 B	32882 B
MQDSS-31-64 (new)	$3-4$	31	64	277	64 B	24 B	59928 B
Round 1				403	88 B	48 B	67800 B

Table: Round 1 parameters in black, New parameters (attack fixed) in red.

Thank you for your attention!

References I

: Magali Bardet, Jean-Charles Faugère, and Bruno Salvy.
On the complexity of the F5 Gröbner basis algorithm.
Journal of Symbolic Computation, 70(Supplement C):49-70, 2015.
國 Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer.
On the complexity of solving quadratic boolean systems.
Journal of Complexity, 29(1):53-75, 2013.
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf.
國 Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe.
From 5-pass $\mathcal{M Q}$-based identification to $\mathcal{M} \mathcal{Q}$-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016, volume 10032 of LNCS, pages 135-165. Springer, 2016.
http://eprint.iacr.org/2016/708.

References II

國 Antoine Joux and Vanessa Vitse.
A crossbred algorithm for solving boolean polynomial systems.
Cryptology ePrint Archive, Report 2017/372, 2017.
http://eprint.iacr.org/2017/372.
D Dominik Leichtle.
Post-quantum signatures from identification schemes.
Master Thesis, Technicshe Universiteit Eindhoven, 2018.
Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari.
Public-key identification schemes based on multivariate quadratic polynomials.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS, pages 706-723. Springer, 2011.
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf.

Implementation considerations

- Very natural internal parallelism

Implementation considerations

- Very natural internal parallelism
- Naively constant-time

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized
- Expanding \mathbf{F} is memory-intensive (134 KiB)
- Problematic on small devices

Implementation considerations

- Very natural internal parallelism
- Naively constant-time
- Mathematically straight-forward
- Multiplications and additions in \mathbb{F}_{31}
- Naively slow
- But still constant-time when optimized
- Expanding \mathbf{F} is memory-intensive (134 KiB)
- Problematic on small devices

