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National Institute of Standards and Technology

• Non-regulatory federal agency within U.S.

Department of Commerce.

• Founded in 1901, known as the National

Bureau of Standards (NBS) prior to 1988.

• Headquarters in Gaithersburg, Maryland, and

laboratories in Boulder, Colorado.

• Employs around 6,000 employees and

associates.

Computer Security Division (CSD) conducts research, development and

outreach necessary to provide standards and guidelines, mechanisms,

tools, metrics and practices to protect nation’s information and

information systems.
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CSD Publications

• Federal Information Processing Standards (FIPS): Specify approved

crypto standards.

• NIST Special Publications (SPs): Guidelines, technical

specifications, recommendations and reference materials, including

multiple sub-series.

• NIST Internal or Interagency Reports (NISTIR): Reports of research

findings, including background information for FIPS and SPs.

• NIST Information Technology Laboratory (ITL) Bulletins: Monthly

overviews of NIST’s security and privacy publications, programs and

projects.
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Standard Development Process

• International “competitions”: Engage community through an open

competition (e.g., AES, SHA-3, PQC, Lightweight Crypto).

• Adoption of existing standards: Collaboration with accredited

standards organizations (e.g., RSA, HMAC).

• Open call for proposals: Ongoing open invitation (e.g., modes of

operations).

• Development of new algorithms: if no suitable standard exists (e.g.,

DRBGs).
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Selected ongoing projects

• Lightweight Cryptography Project aims to provide symmetric key

cryptography solutions specific to constrained devices.

• Post Quantum Cryptography Project aims to standardize one (or

more) quantum-resistant public-key cryptographic algorithms.

• Threshold Cryptography Project studies security of the

implementations, in multi-party and single-device settings.

• Crypto Publication Review Project aims to review quality of the

standards and guidelines every five years, or more frequently if a

need arises.

• Circuit Complexity Project aims to develop new techniques for

constructing better circuits for use by academia and industry.
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Boolean Function Complexity

Problem: Given a basis of Boolean gates, construct a circuit that

computes a function that is optimal w.r.t. some criteria, such as

• Size complexity: The number of gates in the circuit.

• Depth complexity: The length of the longest path from an input

gate to the output gate.

Target metric depends on the application.

• Circuits with small number of gates use less energy and occupy

smaller area, and are desired for lightweight cryptography

applications running on constrained devices.

• Circuits with small number of AND gates are desired for secure

multi-party computation, zero-knowledge proofs and side channel

protection.

• Circuits with small AND-depth are desired for homomorphic

encryption schemes.
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Boolean Circuits

A Boolean circuit with n inputs and m

outputs is a directed acyclic graph (DAG),

where

• the inputs and the gates are nodes,

• the edges correspond to the

Boolean-valued wires,

• fanin/fanout of a node is the number

of wires going in/out the node,

• the nodes with fanin zero are called the

input nodes and are labeled with

{x1,. . . , xn},
• the nodes with fanout zero is the

output node.

∧

x2 x3 x4x1

∧
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Boolean Gates and Functional Completeness

x 0 0 1 1

y 0 1 0 1

f * * * *

0 0 0 0 0

x AND y 0 0 0 1

x AND y 0 0 1 0

x 0 0 1 1

x AND y 0 1 0 0

y 0 1 0 1

x XOR y 0 1 1 0

x OR y 0 1 1 1

x NOR y 1 0 0 0

NOT (x OR y) 1 0 0 1

y 1 0 1 0

x OR y 1 0 1 1

x 1 1 0 0

x OR y 1 1 0 1

x NAND y 1 1 1 0

1 1 1 1 1

A functionally complete set of Boolean

operators is one which can be used to

express all possible truth tables by

combining members of the set into a

Boolean expression.

• {NAND}, {NOR}, {NOT,AND,XOR},
{NOT,AND,OR} and {AND,NOT} are

complete.

• {AND,OR} is not complete,

• not possible to express NOT using

ANDs and ORs.
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Boolean circuit from the truth table

x y z f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Every n-variable Boolean function can be

expressed by a Boolean expression of size

O(n2n),

• using Disjunctive Normal Form, or

• using Conjunctive Normal Form.

Heuristic approaches using graphical techniques

(e.g. Karnaugh map, Quince-McCluskey

algorithm) or SAT solvers etc.
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Boolean circuit from the truth table

Disjunctive Normal Form: sum of products (minterms)

x y z f DNF

0 0 0 0 0

0 0 1 1 x AND y AND z

0 1 0 1 x AND y AND z

0 1 1 1 x AND y AND z

1 0 0 1 x AND y AND z

1 0 1 1 x AND y AND z

1 1 0 0 0

1 1 1 0 0

f = (x AND y AND z) OR (x AND y AND z) OR (x AND y AND z) OR (x

AND y AND z) OR (x AND y AND z)
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Boolean circuit from the truth table

Conjunctive Normal Form: product of sums (maxterms)

x y z f

0 0 0 0 (x OR y OR z)

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0 (x OR y OR z)

1 1 1 0 (x OR y OR z)

f = (x OR y OR z) AND (x OR y OR z) AND (x OR y OR z)
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Straight Line Program (SLP)

begin CIRCUIT MAJ3

# Description: The majority of x1,x2,x3

Inputs: x1:x3;

Outputs: y1;

GateSyntax: GateName Output Inputs

begin SLP

XOR t1 x1 x2;

XOR t2 x1 x3;

AND t3 t1 t2;

XOR y1 t3 x1

end SLP end CIRCUIT
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Relevant Functions

Any function used in cryptographic designs:

• Polynomial multiplication of degree n over GF(2)

• n-bit Boolean functions or classes of Boolean functions (e.g., cubic,

symmetric)

• Vectorial Boolean functions (e.g., AES S-box, MDS)

Circuit #Gates # AND # XOR # XNOR # NOT Depth AND depth

AES S-Box 113 32 77 4 0 27 6

AES S-Box−1 121 34 83 4 0 21 4

AES-128(k,m) 28 600 6400 21 356 844 0 326 60

AES-128(0,m) 21 392 5120 14 652 1620 0 325 60

SHA-256(m) 115 882 22 385 89 248 3894 355 5403 1604

SHA-256(cv ,m) 118 287 22 632 92 802 2840 13 5458 1607

k: AES key, cv : chaining value, m: message (128-bit for AES; 512-bit for SHA-256)
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Multiplicative Complexity

Multiplicative Complexity (MC) of f , denoted C∧(f ), is the minimum

number of AND gates that is sufficient to evaluate f over the basis

(AND, XOR, NOT).

• MC of an affine functions is zero.

• MC of a quadratic function is at most bn/2c.
• Multiplicative complexity of a randomly selected n-bit Boolean

function is at least 2n/2 −O(n).

• No specific n-variable function had been proven to have MC larger

than n.

• Degree Bound: MC of a function with degree d is at least d − 1.

• The number of n-variable Boolean functions with MC k is at most

2k2−k+2kn+n+1.
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Why do we count the AND gates?

• Lightweight Cryptography: Efficient implementations needed for

resource-constrained devices (e.g. RFID tags). The technique of

minimizing the number of AND gates, and then optimizing the linear

components leads to the implementations with low gate complexity.

• Secure multi-party computation: Reducing the number of AND

gates improves the efficiency of secure multi-party protocols (e.g.

conducting online auctions in a way that the winning bid can be

determined without opening the losing bids).

• Side channel attacks: Minimizing the number of AND gates is

necessary when implementing a masking scheme to prevent

side-channel attacks.

• Cryptanalysis of cryptographic primitives: Primitives with low

multiplicative complexity may be susceptible to algebraic

cryptanalysis.
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• Multiplicative Complexity of Boolean functions with n ≤ 6

• Boolean functions with Multiplicative Complexity 1,2,3 and 4

• Multiplicative Complexity of Symmetric Boolean Functions
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• Multiplicative Complexity of Boolean functions with n ≤ 6

• Boolean functions with Multiplicative Complexity 1,2,3 and 4

• Multiplicative Complexity of Symmetric Boolean Functions
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Main observation

Multiplicative Complexity is affine invariant.

• Boolean functions f , g ∈ Bn are affine equivalent if there exists a

transformation of the form f (x) = g(Ax + a) + b · x + c , where A is

a non-singular n × n matrix over F2;

• The set of affine equivalent functions constitute an equivalence class

denoted by [f ], where f is an arbitrary function from the class.

• Affine equivalent Boolean functions have the same MC.
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MC of 4- and 5-bit Boolean Functions 1

Method

1. Find a simple representative from each

equivalence class.

2. Find a circuit with small number of AND

gates.

3. Check if it is optimal using the degree

bound.

Equivalence classes for n = 4

Class Representative

1 x1

2 x1x2

3 x1x2 + x3x4

4 x1x2x3

5 x1x2x3 + x1x4

6 x1x2x3x4

7 x1x2x3x4 + x1x2

8 x1x2x3x4 + x1x2 + x3x4

The multiplicative complexity is

• ≤ 3 for f ∈ B4 (8 equivalence classes),

• ≤ 4 for f ∈ B5 (48 equivalence classes).

1M. Sönmez Turan, R. Peralta: The Multiplicative Complexity of Boolean Functions

on Four and Five Variables. LightSec 2014: 21-33a
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MC of 6-bit Boolean Functions 2

The same approach does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Method

Exhaustively construct all Boolean circuits with 1,2, 3, . . . AND gates,

and mark the Boolean functions that can be generated by the circuits

until all 6-bit Boolean functions are generated.

2Ç. Çalık, M. Sönmez Turan, R. Peralta: The multiplicative complexity of 6-variable

Boolean functions. Cryptogr. Commun. 11(1): 93-107 (2019)
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MC of 6-bit Boolean Functions 2

The same approach does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Method

Exhaustively construct all Boolean circuits with 1,2, 3, . . . AND gates,

and mark the Boolean functions that can be generated by the circuits

until all 6-bit Boolean functions are generated a function from each

equivalence class is generated.

2Ç. Çalık, M. Sönmez Turan, R. Peralta: The multiplicative complexity of 6-variable

Boolean functions. Cryptogr. Commun. 11(1): 93-107 (2019)
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MC of 6-bit Boolean Functions 2

The same approach does not work for n = 6, since

• The number of equivalence classes is 150 537, and

• Simple heuristics do not find optimal circuits, as representatives are

more complex.

• For some classes, it is not possible to verify optimality using the

degree bound.

Method

Exhaustively construct all Boolean circuits topologies with 1,2, 3, . . .

AND gates, and mark the Boolean functions that can be generated by

the circuits until a function from each equivalence class is generated.

2Ç. Çalık, M. Sönmez Turan, R. Peralta: The multiplicative complexity of 6-variable

Boolean functions. Cryptogr. Commun. 11(1): 93-107 (2019)
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Topology of a circuit

Topology is an abstraction of a Boolean circuit that shows the relations

between AND gates

Example: Let f = x1x2x3 + x1x2 + x1x4 + x2x3 + x4.

∧

∧

x2 x3

x2 + x4

x1

x4

∧
∧
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Constructing Circuit Topologies

Topologies with 1 AND gate: ∧

Topologies with 2 AND gates: ∧ ∧ and
∧

∧

Topologies with 3 AND gates

∧ ∧ ∧

∧ ∧
∧

∧ ∧

∧
∧ ∧

∧

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧

Number of topologies

# ANDs 1 2 3 4 5 6

# Topologies 1 2 8 84 3 170 475 248
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Evaluating Topologies to Generate Boolean Functions

• A topology with k AND gates can be supplied

2k linear function inputs X = (L1, . . . , L2k).

Trying all inputs becomes quickly infeasible

since there are 22kn choices (260 inputs for

n = 6, k = 5).

• Any affine transformation of the inputs

A(X ) = (A(L1), . . . ,A(L2k)) will produce a

function from the same equivalence class.

Hence, the inputs that are affine

transformations of each other need not be

considered.

• The number of inputs corresponds to the

Gaussian binomial coefficient
(

2k
n

)
2

(≈ 226

inputs for n = 6, k = 5).

∧ ∧
∧

∧ ∧

∧

L1 L2

L4 L5

L3 L6
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Method

• Construct topologies having k = 1, 2, 3, 4, 5 AND gates.

• For each topology, find the equivalence classes it can produce.

• 149 426 equivalence classes out of 150 357 generated with at most 5

AND gates.

• Remaining 931 equivalence classes were generated from a selection

of 6 AND gate topologies.

• Computations were done on a cluster (Intel Xeon E5-2630 processor,

64GB RAM) and took 38 422 core hours.
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Multiplicative Complexity Distribution for n = 6

The multiplicative complexity is ≤ 6 for f ∈ B6.

Showed that there exists f ∈ B6 with multiplicative complexity 6, e.g.,

• A function with 6 monomials:

x1x5 + x3x6 + x3x4x5 + x2x4 + x1x2x6 + x1x2x3x4x5x6

• A function with algebraic degree 4:

x4x5 +x3x4x5 +x2x5 +x2x4 +x2x4x6 +x1x5x6 +x1x4 +x1x3 +x1x2x4x5 +x1x2x3x6

MC #classes #functions log2(#functions)

0 1 128 7.00

1 1 83 328 16.34

2 3 73 757 184 26.13

3 24 281 721 079 808 38.03

4 914 7 944 756 861 878 272 52.81

5 148 483 18 344 082 080 963 133 440 63.99

6 931 94 716 954 089 619 456 56.39

The method is infeasible for n ≥ 7, due to the large number of affine

equivalence classes and topologies. 25



• Multiplicative Complexity of Boolean functions with n ≤ 6

• Boolean functions with Multiplicative Complexity 1,2,3 and 4

• Multiplicative Complexity of Symmetric Boolean Functions
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Dimension of a Boolean function

The following functions are all affine equivalent and have MC=1:

x1x2

x1 + x2x3

(x1 + x2)(x3 + x4) = x1x3 + x1x4 + x2x3 + x2x4

It is easier to work on smaller number of variables.

Definition. Let Lf be the number of input variables that appear in the

algebraic normal form (ANF) of a Boolean function f . The dimension of

f is the smallest number of variables that appear in the ANF among the

functions that are affine equivalent to f :

dim(f ) = min
g∈[f ]

Lg .

Example. dim(x1x3 + x1x4 + x2x3 + x2x4) = dim(x1x2) = 2
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Linear Structures and Dimension of a Boolean Function

α ∈ Fn
2 is a linear structure of f if f (x) + f (x + α) is constant [Nyb92,

Lai94].

The set of linear structures of a Boolean function form a vector space,

whose dimension dl(f ) is called the linearity dimension of f , where

dl(f ) = log2 #{f (x) + f (x + α), α ∈ Fn
2}.

The dimension of an n-variable Boolean function is:

dim(f ) = n − dl(f ).
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Main Observation

The MC of f is at least ddim(f )/2e.
Sketch of the proof.

1. Let C∧(f ) = k , consider a circuit implementing f with k AND gates.

2. The topology with k AND gates has 2k linear function inputs.

3. The rank of 2k linear functions can be at most 2k.

4. Any set of 2k linear functions on n > 2k variables can be affine

transformed to functions having at most 2k variables.

5. Therefore, dim(f ) ≤ 2k , which implies C∧(f ) ≥ ddim(f )/2e.
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Boolean functions with MC 1 and 2

Boolean functions with MC 1 [FP02]

• Functions with MC 1 are affine equivalent to x1x2.

• The number of n-variable Boolean functions with MC 1 is 2
(

2n

3

)
.

Boolean functions with MC 2 [FTT17]

• Functions with MC 2 are affine equivalent to one of the functions

from the set {x1x2x3, x1x2x3 + x1x4, x1x2 + x3x4}.
• The number of n-variable Boolean functions with MC 2 is

2n(2n − 1)(2n − 2)(2n − 4)

(
2

21
+

2n − 8

12
+

2n − 8

360

)
.
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Boolean functions with MC 3 and 4

Find exhaustive list of equivalence classes with MC 3 and 4.

Approach

Step 1. Construct Boolean circuits (topologies) with 3 and 4 AND gates.

Step 2. Evaluate the circuits to generate Boolean functions.

Step 3. Identify distinct affine equivalence classes with MC 3 and 4.
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Affine Equivalence Classes with MC 3

Dimension 4:

x1x2x3x4

x1x2 + x1x2x3x4

x2x3 + x1x4 + x1x2x3x4

Dimension 5:

x3x4 + x1x5 + x1x2x5 + x1x2x3x4 x3x4 + x1x3x4 + x1x2x5

x2x4 + x1x5 + x1x2x3 x4x5 + x1x2x3

x1x2x5 + x1x2x3x4 x1x3x4 + x1x2x5

x2x3x5 + x1x4x5 + x1x2x3x4 x3x5 + x1x2x5 + x1x2x3x4

x1x3 + x1x2x5 + x1x2x3x4 x3x4 + x1x2x5 + x1x2x3x4

x1x5 + x1x2x3x4 x2x3 + x1x5 + x1x2x3x4

x2x3 + x2x3x5 + x1x4x5 + x1x2x3x4 x1x5 + x1x2x5 + x1x2x3x4

Dimension 6:

x3x4 + x2x5 + x1x6 x1x6 + x1x3x4 + x1x2x5

x3x4 + x1x6 + x1x3x4 + x1x2x5 x4x5 + x1x6 + x1x2x3

x1x6 + x1x2x5 + x1x2x3x4 x5x6 + x3x4x5 + x1x2x6 + x1x2x3x4

x3x4 + x1x6 + x1x2x5 + x1x2x3x4
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Affine Equivalence Classes with MC 4

After evaluating 84 topologies with 4 AND gates, we obtained

• 26 classes with dimension 5,

• 888 classes with dimension 6,

• 321 classes with dimension 7,

• 42 classes with dimension 8.

Complete list is available at:

https://github.com/usnistgov/Circuits/tree/master/data/mc_dim
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How about Boolean functions with MC 5?

MC
dimension

2 3 4 5 6 7 8 9 10 11 12 Total

1 1 1

2 1 2 3

3 3 14 7 24

4 26 888 321 42 1277

5 148483 * * * 575 *

6 931 * * * * * * *

Table 1: The Distribution of Classes w.r.t MC and Dimension.
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• Multiplicative Complexity of Boolean functions with n ≤ 6

• Boolean functions with Multiplicative Complexity 1,2,3 and 4

• Multiplicative Complexity of Symmetric Boolean Functions
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Symmetric Boolean Functions

A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric, if the

output depends only on the Hamming weight of the input.

Representation: Symmetric functions can be represented using (n + 1)-bit

vector v(f ) = (v0, . . . , vn) such that f (x) = vi if the weight of x is i .

• Elementary symmetric functions, Σn
k , composed of all degree k

monomials.

• Counting function, E n
k , outputs 1 if and only if wh(x) = k.

• Threshold function, T n
k , outputs 1 if and only if wh(x) ≥ k.

Every symmetric function can be written as a summation of elementary

symmetric functions.

Can we use the inherent symmetries to find efficient implementations?
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Example - Threshold function

T 5
3 (x1, x2, x3, x4, x5) =

{
1, if majority of {x1, x2, x3, x4, x5} is 1,

0, otherwise.

The algebraic normal form:

T 5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5 + x2x3x4

+x2x3x5 + x2x4x5 + x3x4x5 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5

+x1x3x4x5 + x2x3x4x5

The equation contains 35 multiplications, but only 3 multiplications are

sufficient to compute it.
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Multiplicative Complexity of the Symmetric Functions

• A construction of circuits for symmetric Boolean functions on n

variables that requires ≤ n + 3
√
n AND gates. (Boyar et al., 2008)

• The MC of an n-bit nonlinear symmetric function is at least b n2c.
• The MC of Σn

2 is b n2c.
• The MC of Σn

3 is d n2e.
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Constructing Circuits for Symmetric Functions

Generic approach:

• Compute the binary representation of

Hamming weight of (x1, . . . , xn)

• Construct a second function based on

the hamming weight with dlogne
number of variables.

Composition of optimal sub-circuits do not necessarily result in an

optimal circuit.

Approach: Use weight encodings that also considers the second part of

the function.

• (Optimal) circuits for all symmetric functions with up to 25 variables.

• Upper bounds on the maximum MC of symmetric Boolean functions

for n ≤ 132.
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Open Problems

• New heuristics for constructing circuits with small number of AND

gates

• New lower and upper bounds on the MC of Boolean functions.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MC ≤ 1 2 3 4 6 13 26 41 57 88 120 183 247 374 502

• Prove that MC of a specific Boolean function is more than n.

• New circuit for AES s-box with less than 32 AND gates

• Results on special classes of functions (e.g., partially symmetric, or

rotation symmetric functions)

• MC of vectorial Boolean functions on n ≥ 5 bits.
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Ç. Çalık, M. Sönmez Turan, R. Peralta, Boolean functions with multiplicative complexity 3 and 4.

Cryptogr. Commun. 12, 935–946 (2020).
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More Information

NIST Circuit Complexity Project Webpage:

https://csrc.nist.gov/Projects/Circuit-Complexity

GitHubLink:

https://github.com/usnistgov/Circuits/

Contact email:

meltem.turan@nist.gov

circuit complexity@nist.gov
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