A New Attack on the LUOV Schemes

Jintai Ding, Zheng Zhang, Joshua Deaton, Kurt Schmidt, Vishakha FNU

University of Cincinnati

jintai.ding@gmail.com

The 2nd NIST PQC workshop, Aug. 23, 2019

Jintai Ding, Zheng Zhang, Joshua Deaton, Ku

The 2nd NIST PQC workshop, Aug. 23, 2019

< 回 ト < 三 ト < 三

Overview

- General Construction of MPKC signature scheme
- 2 Oil Vinegar Signature Scheme
 - 3 The Idea of the Attack
 - 4 Toy Example
- 5 Attack Complexity on LUOV
- 6 Why SDA is not a Threat to UOV or Rainbow

7 Conclusion

- **Public key**: $\mathcal{P}(x_1, \dots, x_n) = (p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n))$. Here p_i are multivariate polynomials over a finite field.
- **Private key** A way to compute \mathcal{P}^{-1} .
- Signing a hash of a document: $(x_1, \dots, x_n) \in \mathcal{P}^{-1}(y_1, \dots, y_m).$
- Verifying:

$$(y_1,\cdots,y_m) \stackrel{?}{=} \mathcal{P}(x_1,\cdots,x_n)$$

< 回 > < 三 > < 三 >

• Direct attack is to solve the set of equations:

$$G(M) = G(x_1, ..., x_n) = (y'_1, ..., y'_m).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Direct attack is to solve the set of equations:

$$G(M) = G(x_1, ..., x_n) = (y'_1, ..., y'_m).$$

 Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-hard, though this does not necessarily ensure the security of the systems.

Quadratic Constructions

• 1) Efficiency considerations lead to mainly quadratic constructions.

$$G_l(x_1,..x_n) = \sum_{i,j} \alpha_{lij} x_i x_j + \sum_i \beta_{li} x_i + \gamma_l.$$

 2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$x_1x_2x_3=5,$$

is equivalent to

$$\begin{array}{rcl} x_1x_2-y &= 0\\ yx_3 &= 5. \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The view from the history of Mathematics(Diffie in Paris)

- RSA Number Theory 18th century mathematics
- ECC Theory of Elliptic Curves 19th century mathematics
- Multivariate Public key cryptosystem Algebraic Geometry 20th century mathematics
 Algebraic Geometry – Theory of Polynomial Rings

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduced by J. Patarin, 1997
- Inspired by linearization attack to Matsumoto-Imai cryptosystem
- $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$.
 - \mathcal{F} : nonlinear, easy to compute \mathcal{F}^{-1} .
 - $\mathcal{T}\text{:}$ invertible linear, to hide the structure of $\mathcal{F}\text{.}$

.

• $\mathcal{F} = (f_1(x_1, \dots, x_0, x'_1, \dots, x'_{\nu}), \dots, f_o(x_1, \dots, x_0, x'_1, \dots, x'_{\nu})).$ • $f_k = \sum a_{i,j,k} x_i x'_i + \sum b_{i,j,k} x'_i x'_i + \sum c_{i,k} x_i + \sum d_{i,k} x'_i + e_k$

• Oil variables: x_1, \cdots, x_o

Vinegar variables: x'_1, \dots, x'_v .

• Public Key: $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$. Private Key: \mathcal{T} .

< 回 > < 三 > < 三 >

- Fix values for vinegar variables x'_1, \dots, x'_v .
- $f_k = \sum a_{i,j,k} x_i x'_j + \sum b_{i,j,k} x'_i x'_j + \sum c_{i,k} x_i + \sum d_{i,k} x'_i + e_k$
- \mathcal{F} : Linear system in oil variables x_1, \dots, x_o .

э

A (10) A (10)

• *V* = 0

Defeated by Kipnis and Shamir using invariant subspace (1998).

● *V* < 0

by guessing some variables will be most likely turn into a OV system where v = o

• *v* >> *o*

Finding a solution is generally easy

• *v* = 2*o*, 3*o*

Direct attack does not work – the complexity is the same as if solving a random system!

 Beyond a direct attack, there is the reconciliation attack which uses the structure of OV systems. Looks for equivalent maps of a special form. Complexity becomes that of solving a system of *o* quadratic equations in *v* variables.

Less efficient

Signature is at least twice the size of the document

Rainbow, J. Ding, D. Schmidt (2005) Multilayer version of UOV. Reduces number of variables in the public key smaller key sizes smaller signatures

• Rainbow is a NIST round 2 candidate.

- Newly Designed by Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren from imec-COSIC KU Leuven in 2017.
- A modification of the original unbalanced oilvinegar scheme
- Coefficients of the public key are from \mathbb{F}_2
- Shorten the size of the public key.

< 回 > < 三 > < 三 >

Let \mathbb{F}_{2^r} be the extension of \mathbb{F}_2 of degree r, v > o and n = v + o.

• Central map:
$$\mathcal{F} : \mathbb{F}_{2^{r}}^{n} \to \mathbb{F}_{2^{r}}^{o}$$

• $f_{k}(\mathbf{x}) = \sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i,j,k} x_{i} x_{j} + \sum_{i=1}^{n} \beta_{i,k} x_{i} + \gamma_{k}$.
where $\alpha_{i,j,k}, \beta_{i,j,k}, \gamma_{k}$ are from \mathbb{F}_{2} .
• Choose \mathcal{T} :
 $\begin{bmatrix} \mathbf{1}_{v} & \mathbf{T} \\ \mathbf{0} & \mathbf{1}_{o} \end{bmatrix}$

where ${\bf T}$ is a $v\times {\it o}$ matrix whose entries are also from the small field \mathbb{F}_2

э

A (10) A (10)

- Base field: 𝔽₂,
- Extension field: \mathbb{F}_{2^r}
- Small subfield: \mathbb{F}_{2^d} , where d|r.
- $\mathbb{F}_{2^r} \cong \mathbb{F}_{2^d}[t]/f(t)$, where f(t) is an irreducible polynomial of degree r/d.
- Elements in F_{2^r} can be represented by from F_{2^d}.

y
$$\sum_{i=0}^{r/d-1} a_i t^i$$
, where a_i are

Differential:

$$\mathbf{x}' + \bar{\mathbf{x}} \in \mathbb{F}_{2^r}^n$$

where we randomly fix $\mathbf{x}' \in \mathbb{F}_{2^r}^n$ and we let $\bar{\mathbf{x}} \in \mathbb{F}_{2^d}^n$ vary.

Jintai Ding, Zheng Zhang, Joshua Deaton, Ku

The 2nd NIST PQC workshop, Aug. 23, 2019

2

イロト イヨト イヨト イヨト

Given: $\mathbf{y} = (y_1, \dots, y_o) \in \mathbb{F}_{2^r}^o$ and choose an arbitrary $\mathbf{x}' \in \mathbb{F}_{2^r}^n$. **Question**: Does there exist a reasonable small integer *d* such that there will also exist a $\bar{\mathbf{x}} \in \mathbb{F}_{2^d}^n \subset \mathbb{F}_{2^r}^n$ where $P(\mathbf{x}' + \bar{\mathbf{x}}) = \mathbf{y}$?

< 回 > < 三 > < 三 >

The attack principle

The attack principle

- Given $\mathbf{y} \in \mathbb{F}_{2^r}^o$
- Choose $\mathbf{x}' \in \mathbb{F}_{2^d}^n$.
- $\mathcal{P}': \mathbb{F}_{2^d}^n \to \mathbb{F}_{2^r}^o$ given by $\mathcal{P}'(\bar{\mathbf{x}}) = \mathcal{P}(\mathbf{x}' + \bar{\mathbf{x}})$
- Assume that \mathcal{P}' acts as a random map from $\mathbb{F}_{2^d}^n \to \mathbb{F}_{2^r}^o$.

A (10) A (10)

- $|\mathbb{F}_{2^d}^n| = 2^{d \cdot n}$
- $|\mathbb{F}_{2^r}^o| = 2^{r \cdot o}$
- The probability that $\mathcal{P}'(\bar{\boldsymbol{x}}) \neq \boldsymbol{y}$ is $1 \frac{1}{2^{r \cdot o}}$.

(日)

- The outputs of \mathcal{P}' are independent
- Exhausting every element of \mathbb{F}_{2d}^n
- Estimated our desired probability as

$$\left(1 - \frac{1}{2^{r \cdot o}}\right)^{2^{d \cdot n}} = \left(\left(1 - \frac{1}{2^{r \cdot o}}\right)^{2^{r \cdot o}}\right)^{2^{(d \cdot n) - (r \cdot o)}} \approx e^{-2^{(d \cdot n) - (r \cdot o)}},$$

because $\lim_{n\to\infty}(1-\frac{1}{n})^n=e^{-1}$.

Jintai Ding, Zheng Zhang, Joshua Deaton, Ku

Estimated Probabilities for the LUOV Parameters Submitted

Security Level	r	0	v	n	d	Probability of Failure
I	8	58	237	295	2	$exp(-2^{126})$
IV	8	82	323	405	2	$exp(-2^{154})$
V	8	107	371	478	2	$exp(-2^{100})$

Table: Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of the Signature

Security Level	r	0	V	n	d	Probability of Failure
II	48	43	222	265	8	$exp(-2^{56})$
IV	64	61	302	363	16	$\exp(-2^{1904})$
V	80	76	363	439	16	$exp(-2^{944})$

 Table: Estimated Probabilities of Failure for Parameters Designed to Minimize

 the Size of the Signature and Public Key

Jintai Ding, Zheng Zhang, Joshua Deaton, Ku

• *k*th component of $\mathcal{P}(\mathbf{x}' + \bar{\mathbf{x}})$

$$\tilde{f}_{k}(\mathbf{x}'+\bar{\mathbf{x}}) = \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i,j,k}(\mathbf{x}'_{i}+\bar{\mathbf{x}}_{i})(\mathbf{x}'_{j}+\bar{\mathbf{x}}_{j}) + \sum_{i=1}^{n} \beta_{i,k}(\mathbf{x}'_{i}+\bar{\mathbf{x}}_{i}) + \gamma_{k} = \mathbf{y}_{k}$$

Where $\alpha_{i,j,k}, \beta_{i,k}, \gamma_k \in \mathbb{F}_2$ and $\mathbf{x}'_i \in \mathbb{F}_{2^r}$.

э

イロト イヨト イヨト イヨト

$$\begin{split} \tilde{f}_{k}(\mathbf{x}' + \bar{\mathbf{x}}) &= \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i,j,k} (\mathbf{x}_{i}' \mathbf{x}_{j}' + \mathbf{x}_{i}' \bar{\mathbf{x}}_{i} + \mathbf{x}_{j}' \bar{\mathbf{x}}_{j}) + \sum_{i=1}^{n} \beta_{i,k} (\mathbf{x}_{i}' + \bar{\mathbf{x}}_{i}) + \gamma_{k} \\ &+ \sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i,j,k} \bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{j} \\ &= y_{k} \end{split}$$

The quadratic terms have coefficients $\alpha_{i,j,k}$, which can only be 0 or 1.

э

イロト イ理ト イヨト イヨト

- We view these over $\mathbb{F}_{2^d}[t]/f(t)$
- So if $\frac{r}{d} = s$, $\frac{x'_{i}}{s} = a_{s-1}t^{s-1} + \cdots + a_{0}$.
- Regroup the above equations of $\tilde{f}_k = y_k$ in terms of the powers of t.
- This means that the coefficient of t^i , $i = 1 \cdots$, s 1 is a linear polynomial of the \bar{x}_i .

э

We have that

$$\tilde{f}_k(\mathbf{x}'+\bar{\mathbf{x}}) = \sum_{i=1}^{s-1} g_{i,k}(\bar{x}_1,\cdots,\bar{x}_n)t^i + Q_k(\bar{x}_1,\cdots,\bar{x}_n) = y_k = \sum_{i=0}^{s-1} w_{i,k}t^i.$$

for some $w_{i,k} \in \mathbb{F}_{2^d}$, some linear polynomials $g_{i,k}(\bar{x}_1, \cdots, \bar{x}_n) \in \mathbb{F}_{2^d}[\bar{x}_1, \cdots, \bar{x}_n]$, and some quadratic polynomial $Q_k(\bar{x}_1, \cdots, \bar{x}_n) \in \mathbb{F}_{2^d}[\bar{x}_1, \cdots, \bar{x}_n]$

э.

く 戸 と く ヨ と く ヨ と

- Each \tilde{f}_k has s 1 linear equations $g_{i,k}(\bar{x}_1, \dots, \bar{x}_n) = w_{i,k}$, one for each power of t.
- (s-1)o linear equations with *n* variables.
- This can be represented by $\mathbf{A}\mathbf{x} = \mathbf{y}$.
- Our desired $\bar{\mathbf{x}}$ is in the solution space.

- Each \tilde{f}_k will have an additional quadratic polynomial equation Q_k which must also be satisfied. $Q_k(\bar{x}_1, \dots, \bar{x}_n) = w_{0,k}$
- Each of these equations is over the small field 𝔽_{2^d}.

- As the (s 1)o linear equations to solve with *n* variables and these linear polynomials are essentially random and thus likely linearly independent, we have a solution space around the size of $n - \operatorname{rank}(A) = n - (s - 1)o$.
- We just need one an element from here that also satisfies the quadratic polynomials.

- If we have more variables than equations, we use the method of Thomae and Wolf: "Solving underdetermined systems of multivariate quadratic equations revisited".
- System of *o* equations, *n* (*s* 1)*o* variables reduced to System of *m* equations *m* variables

$$m=o-\left\lfloor rac{n-(s-1)o}{o}
ight
floor$$

A (10) A (10)

- Guess for a certain number of the variables.
- Use algorithm XL with Wiedemann.

イロト イヨト イヨト イヨト

- Use **Theorem 2** from *"Theoretical Analysis of XL over Small Fields"* by *Bo-yin Yang et al.*
- For a system of *m* equations with *n* variables over \mathbb{F}_q , the degree of regularity is $D_{reg} = \min\{D : [t^D]((1-t)^{-n-1}(1-t^q)^n(1-t^2)^m(1-t^{2q})^{-m})) \le 0\}$ [u]p denotes the coefficient of term in the expansion of p. E.g. $[x^2](1+x)^4 = 6$.

- Use **Proposition 3.4** from "Analysis of QUAD" Bo-yin Yang *et al.*
- Expected running time of XL is roughly: $C_{XL} \sim 3T^2 \tau$
- $T = \binom{n+D_{reg}}{D_{reg}}$
- τ is number of terms in an equation.

э

A (10) A (10)

We will give a small toy example with the following parameters: o = 2, v = 8, n = 10, r = 8, d = 2.Here we will represent \mathbb{F}_{2^2} by the elements $\{0, 1, w_1, w_2\}$. We note that

$$\mathbb{F}_{2^8} \cong \mathbb{F}_{2^2}[t]/f(t)$$

where $f(t) = t^4 + t^2 + w_1 t + 1$.

э

A (10) A (10)

Consider the LUOV public key $\mathcal{P}: \mathbb{F}_{2^8}^n \to \mathbb{F}_{2^8}^o$ which for simplicity sake will be homogeneous of degree two:

$$\begin{split} \tilde{f}_{1}(\mathbf{x}) = & x_{1}x_{4} + x_{1}x_{5} + x_{1}x_{6} + x_{1}x_{7} + x_{1}x_{8} + x_{1}x_{9} + x_{2}x_{4} + x_{2}x_{6} + x_{2}x_{9} \\ & + x_{3}^{2} + x_{3}x_{6} + x_{3}x_{7} + x_{3}x_{10} + x_{4}^{2} + x_{4}x_{7} + x_{4}x_{8} + x_{4}x_{9} + x_{4}x_{10} \\ & + x_{5}x_{6} + x_{6}x_{10} + x_{7}^{2} + x_{7}x_{8} + x_{7}x_{9} + x_{8}x_{9} + x_{8}x_{10} + x_{9}^{2} + x_{9}x_{10} \\ \tilde{f}_{2}(\mathbf{x}) = & x_{1}x_{3} + x_{1}x_{4} + x_{1}x_{5} + x_{1}x_{9} + x_{2}x_{3} + x_{2}x_{6} + x_{2}x_{7} + x_{2}x_{9} + x_{3}^{2} + x_{3}x_{4} \\ & + x_{3}x_{5} + x_{3}x_{6} + x_{3}x_{7} + x_{3}x_{9} + x_{4}^{2} + x_{4}x_{5} + x_{4}x_{6} + x_{4}x_{7} + x_{4}x_{10} \\ & + x_{5}^{2} + x_{5}x_{6} + x_{5}x_{7} + x_{5}x_{8} + x_{5}x_{10} + x_{6}x_{7} + x_{7}x_{9} + x_{9}x_{10} + x_{10}^{2} \end{split}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Toy Example III

We will attempt to find a signature for the message:

$$\mathbf{y} = \begin{bmatrix} w_1 t^3 + w_2 t^2 + w_2 t \\ w_2 t^3 + w_2 t^2 + t \end{bmatrix}$$

First we randomly select our \mathbf{x}' as

$$\mathbf{x}' = \begin{bmatrix} t^3 + w_2 t \\ w_1 t^3 + w_2 t^2 + w_2 t \\ t^3 + t + 1 \\ w_2 t^2 + w_1 \\ t^3 + t^2 + 1 \\ w_2 t^3 + t^2 + w_2 t + w_2 \\ w_1 t^3 + w_2 t + w \\ w_1 t^2 + w_2 t + 1 \\ t^3 + w_2 t + w_1 \\ w_2 t + w_2 \end{bmatrix}$$

- 4 回 ト 4 回 ト

Toy Example IV

Next we compute $\mathcal{P}(\mathbf{x}' + \bar{\mathbf{x}}) =$

$$\begin{split} & (\bar{x}_{1} + w_{1}\bar{x}_{2} + \bar{x}_{3} + w_{1}\bar{x}_{5} + w_{2}\bar{x}_{6} + \bar{x}_{7} + w_{1}\bar{x}_{8} + \bar{x}_{9} + w_{2}\bar{x}_{10})t^{3} \\ & + (\bar{x}_{1} + w_{1}\bar{x}_{2} + \bar{x}_{3} + \bar{x}_{4} + \bar{x}_{5} + w_{1}\bar{x}_{6} + \bar{x}_{7} + w_{2}\bar{x}_{8} + w_{1}\bar{x}_{9})t^{2} \\ & + (w_{2}\bar{x}_{3} + w_{1}\bar{x}_{6} + w_{1}\bar{x}_{7} + w_{2}\bar{x}_{9} + w_{1}\bar{x}_{10})t \\ & + Q_{1}(\bar{x}_{1}, \cdots, \bar{x}_{n}), \\ & (\bar{x}_{1} + \bar{x}_{2} + w_{1}\bar{x}_{3} + \bar{x}_{5} + \bar{x}_{8})t^{3} \\ & + (w_{1}\bar{x}_{1} + \bar{x}_{2} + \bar{x}_{6} + \bar{x}_{8} + w_{2}\bar{x}_{9} + w_{1}\bar{x}_{10})t^{2} \\ & + (w_{1}\bar{x}_{1} + w_{1}\bar{x}_{2} + w_{2}\bar{x}_{3} + \bar{x}_{4} + w_{1}\bar{x}_{5} + \bar{x}_{6} + w_{1}\bar{x}_{7} + \bar{x}_{9} + w_{2}\bar{x}_{10})t \\ & + Q_{2}(\bar{x}_{1}, \cdots, \bar{x}_{n})] \end{split}$$

æ

イロト イヨト イヨト イヨト

The linear part forms the matrix equation:

Since the solution space is small (dim 4), by quick search we find signature

$$\sigma = \begin{bmatrix} t^3 + w_2t + 1\\ w_1t^3 + w_2t^2 + w_2t + w_1\\ t^3 + t + w_2\\ w_2t^2\\ t^3 + t^2 + 1\\ w_2t^3 + t^2 + w_2t + 1\\ w_1t^3 + w_2t + w_1\\ w_1t^2 + w_2t + 1\\ t^3 + w_2t + 1\\ w_2t \end{bmatrix}$$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

- In order to make sure that finding a signature like above was not a fluke, we ran an experiment of creating a public key with parameters r = 8, o = 5, v = 20, n = 25, d = 2. Generating 10,000 random documents, we were able to find using the method from the toy example a signature for every document.
- And in order to show that we achieve the expected (s 1)o equations, we ran an experiment for the given parameters for level II security r = 8, o = 58, v = 237, n = 295. We were successful.

A (10) A (10)

- In the following slides we will compute the complexity of SDA against the various parameters of LUOV.
- We will also give the NIST complexity requirement for classical attacks (not quantum).
- We will show the number of equation and variables before applying the method of Thomae and Wolf, and those after applying the method.
- Then the number of variables guessed in the XL algorithm as well as the degree of regularity.

э

< 回 > < 回 > < 回 > -

Level II Parameter Choice

NIST Classical Security Complexity Requirement 2¹⁴⁶

r = 8, o = 58, v = 237, n = 295
 Claimed Classical Security 2¹⁴⁶

Finite	Original	New	Variables	Degree of
Field	$eq \times var$	$eq \times var$	Guessed	Regularity
\mathbb{F}_{2^2}	58 × 121	56 imes 56	24	7

- Complexity of Attack: 2¹⁰⁷
- r = 48, o = 43, v = 222, n = 265
 Claimed Classical Security 2¹⁴⁷

Finite	Original	New	Variables	Degree of
Field	$eq \times var$	eq imes var	Guessed	Regularity
F _{2⁸}	43 × 50	42 × 42	3	19

• Complexity of Attack: 2¹³⁵

Level IV Parameter Choice

NIST Classical Security Complexity Requirement 2²¹⁰

r = 8, o = 82, v = 323, n = 405
 Claimed Classical Security 2²¹²

Finite	Original	New	Variables	Degree of
Field	$eq \times var$	$eq \times var$	Guessed	Regularity
\mathbb{F}_{2^2}	82 × 159	81 × 81	37	8

- Complexity of Attack: 2^{144.5}
- r = 64, o = 61, v = 302, n = 363
 Claimed Classical Security 2²¹⁴

Finite	Original	New	Variables	Degree of
Field	eq imes var	eq imes var	Guessed	Regularity
$\mathbb{F}_{2^{16}}$	61 × 180	59 imes 59	2	31

• Complexity of Attack: 2²⁰²

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Level V Parameter Choice

NIST Classical Security Complexity Requirement 2272

r = 8, o = 107, v = 371, n = 478
 Claimed Classical Security 2²⁷³

Finite	Original	New	Variables	Degree of
Field	$eq \times var$	eq imes var	Guessed	Regularity
\mathbb{F}_{2^2}	107 × 157	106 × 106	51	9

- Complexity of Attack: 2¹⁸⁴
- r = 80, o = 76, v = 363, n = 439
 Claimed Classical Security 2²⁷³

Finite	Original	New	Variables	Degree of
Field	eq imes var	eq imes var	Guessed	Regularity
$\mathbb{F}_{2^{16}}$	76 × 131	75 imes 75	2	38

• Complexity of Attack: 2244

э

< ロ > < 同 > < 三 > < 三 >

- All LUOV schemes fail to meet the security level requirements.
- Level II schemes do not satisfy Level I requirement.
- The largest gap of security estimate is 89 bits.

< 回 > < 三 > < 三 >

- UOV Public Key: $\mathcal{P}: \mathbb{F}_{2^r}^n \to \mathbb{F}_{2^r}^o$
- *k*th component of \mathcal{P} : $\overline{f}_k(\mathbf{x}) = \sum_{i=1}^{\nu} \sum_{j=i}^{n} \alpha_{i,j,k} x_i x_j + \sum_{i=1}^{n} \beta_{i,k} x_i + \gamma_k.$
- $\alpha_{i,j,k}, \beta_{i,k}$ and γ_k are randomly chosen from \mathbb{F}_{2^r}

Inapplicable on UOV

- Differential: $\mathbf{x}' + \bar{\mathbf{x}}$ with $\mathbf{x}' \in \mathbb{F}_{2^r}$ and $\bar{\mathbf{x}} \in \mathbb{F}_{2^d}$
- kth component of \mathcal{P}

$$\bar{f}_{k}(\mathbf{x}' + \bar{\mathbf{x}}) = \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i,j,k}(\mathbf{x}'_{i} + \bar{\mathbf{x}}_{i})(\mathbf{x}'_{j} + \bar{\mathbf{x}}_{j}) + \sum_{i=1}^{n} \beta_{i,k}(\mathbf{x}'_{i} + + \bar{\mathbf{x}}_{i}) + \gamma_{k}$$
$$= \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i,j,k}(\mathbf{x}'_{i}\mathbf{x}'_{j} + \mathbf{x}'_{i}\bar{\mathbf{x}}_{i} + \mathbf{x}'_{j}\bar{\mathbf{x}}_{j}) + \sum_{i=1}^{n} \beta_{i,k}(\mathbf{x}'_{i} + \bar{\mathbf{x}}_{i}) + \gamma_{k}$$
$$+ \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i,j,k}\bar{\mathbf{x}}_{i}\bar{\mathbf{x}}_{j} = \mathbf{y}_{k}$$

э

- $\alpha_{i,j,k}, \beta_{i,k}$ and γ_k can also be represented by a polynomial in $\mathbb{F}_{2^d}[t]/f(t)$
- multiplication from α_{i,j,k}, β_{i,k} and γ_k in *f*_k will mix the degrees of the polynomial expression of *x*_i's in F_{2^d}[t]/f(t)
- Comparing the coefficients of all degrees of *t* is useless.

< 🗇 > < 🖻 > < 🖻 >

We have seen that though LUOV is an interesting development of UOV, its newness hides its flaws. In particular

- There is a near certainty that the differential attack can be successful with a small enough subfield 𝔽_{2^d}
- That this gives us many linear equations over this small subfield which can be used to solve for a signature
- The complexity of doing such is lower (sometime MUCH LOWER) than the NIST security levels for each proposed category.
- We are developing new interesting and promising attacks using different subset.

A (10) A (10)

۰

٥

Thanks and Any Questions?

Supported by Taft Fund, NIST and NSF

Jintai Ding, Zheng Zhang, Joshua Deaton, Ku

The 2nd NIST PQC workshop, Aug. 23, 2019

A (10) A (10) A (10)