A New Attack on the LUOV Schemes

Jintai Ding, Zheng Zhang, Joshua Deaton, Kurt Schmidt, Vishakha FNU

University of Cincinnati
jintai.ding@gmail.com

The 2nd NIST PQC workshop, Aug. 23, 2019

Overview

(1) General Construction of MPKC signature scheme
(2) Oil Vinegar Signature Scheme
(3) The Idea of the Attack
4. Toy Example
(5) Attack Complexity on LUOV

6 Why SDA is not a Threat to UOV or Rainbow
(7) Conclusion

Multivariate Signature schemes

- Public key: $\mathcal{P}\left(x_{1}, \cdots, x_{n}\right)=\left(p_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, p_{m}\left(x_{1}, \cdots, x_{n}\right)\right)$. Here p_{i} are multivariate polynomials over a finite field.
- Private key A way to compute \mathcal{P}^{-1}.
- Signing a hash of a document:

$$
\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{P}^{-1}\left(y_{1}, \cdots, y_{m}\right)
$$

- Verifying:

$$
\left(y_{1}, \cdots, y_{m}\right) \stackrel{?}{=} \mathcal{P}\left(x_{1}, \cdots, x_{n}\right)
$$

Theoretical Foundation

- Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

Theoretical Foundation

- Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

- - Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-hard, though this does not necessarily ensure the security of the systems.

Quadratic Constructions

- 1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_{l}\left(x_{1}, . . x_{n}\right)=\sum_{i, j} \alpha_{l i j} x_{i} x_{j}+\sum_{i} \beta_{l i} x_{i}+\gamma_{l}
$$

- 2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$
x_{1} x_{2} x_{3}=5
$$

is equivalent to

$$
\begin{aligned}
x_{1} x_{2}-y & =0 \\
y x_{3} & =5
\end{aligned}
$$

The view from the history of Mathematics(Diffie in Paris)

- RSA - Number Theory - 18th century mathematics
- ECC - Theory of Elliptic Curves - 19th century mathematics
- Multivariate Public key cryptosystem - Algebraic Geometry - 20th century mathematics
Algebraic Geometry - Theory of Polynomial Rings

Oil Vinegar Signature Scheme

- Introduced by J. Patarin, 1997
- Inspired by linearization attack to Matsumoto-Imai cryptosystem
- $\mathcal{P}=\mathcal{F} \circ \mathcal{T}$.
\mathcal{F} : nonlinear, easy to compute \mathcal{F}^{-1}.
\mathcal{T} : invertible linear, to hide the structure of \mathcal{F}.

Oil Vinegar Signature Scheme

- $\mathcal{F}=\left(f_{1}\left(x_{1}, \cdots, x_{0}, x_{1}^{\prime}, \cdots, x_{v}^{\prime}\right), \cdots, f_{o}\left(x_{1}, \cdots, x_{0}, x_{1}^{\prime}, \cdots, x_{v}^{\prime}\right)\right)$.
- $f_{k}=\sum a_{i, j, k} x_{i} x_{j}^{\prime}+\sum b_{i, j, k} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{i, k} x_{i}+\sum d_{i, k} x_{i}^{\prime}+e_{k}$
- Oil variables: x_{1}, \cdots, x_{0}

Vinegar variables: $x_{1}^{\prime}, \cdots, x_{v}^{\prime}$.

- Public Key: $\mathcal{P}=\mathcal{F} \circ \mathcal{T}$. Private Key: \mathcal{T}.

How to find \mathcal{F}^{-1}

- Fix values for vinegar variables $x_{1}^{\prime}, \cdots, x_{v}^{\prime}$.
- $f_{k}=\sum a_{i, j, k} x_{i} x_{j}^{\prime}+\sum b_{i, j, k} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{i, k} x_{i}+\sum d_{i, k} x_{i}^{\prime}+e_{k}$
- \mathcal{F} : Linear system in oil variables x_{1}, \cdots, x_{0}.

Broken Parameters

- $v=0$

Defeated by Kipnis and Shamir using invariant subspace (1998).

- $v<0$
by guessing some variables will be most likely turn into a OV system where $v=0$
- $v \gg 0$

Finding a solution is generally easy

Usable Parameters

- $v=20,30$

Direct attack does not work - the complexity is the same as if solving a random system!

- Beyond a direct attack, there is the reconciliation attack which uses the structure of OV systems. Looks for equivalent maps of a special form. Complexity becomes that of solving a system of o quadratic equations in v variables.
- Less efficient

Signature is at least twice the size of the document

Modifications

- Rainbow, J. Ding, D. Schmidt (2005) Multilayer version of UOV.
Reduces number of variables in the public key smaller key sizes smaller signatures
- Rainbow is a NIST round 2 candidate.
- Newly Designed by Ward Beullens, Bart Preneel, Alan Szepieniec, and Frederik Vercauteren from imec-COSIC KU Leuven in 2017.
- A modification of the original unbalanced oilvinegar scheme
- Coefficients of the public key are from \mathbb{F}_{2}
- Shorten the size of the public key.

LUOV

Let $\mathbb{F}_{2^{r}}$ be the extension of \mathbb{F}_{2} of degree $r, v>o$ and $n=v+o$.

- Central map: $\mathcal{F}: \mathbb{F}_{2^{r}}^{n} \rightarrow \mathbb{F}_{2^{r}}^{o}$
- $f_{k}(\mathbf{x})=\sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i, j, k} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i, k} x_{i}+\gamma_{k}$.
where $\alpha_{i, j, k}, \beta_{i, j, k}, \gamma_{k}$ are from \mathbb{F}_{2}.
- Choose \mathcal{T} :

$$
\left[\begin{array}{cc}
\mathbf{1}_{V} & \mathbf{T} \\
\mathbf{0} & \mathbf{1}_{0}
\end{array}\right]
$$

where \mathbf{T} is a $v \times o$ matrix whose entries are also from the small field \mathbb{F}_{2}

Representation of Finite Fields

- Base field: \mathbb{F}_{2},
- Extension field: $\mathbb{F}_{2^{r}}$
- Small subfield: $\mathbb{F}_{2^{d}}$, where $d \mid r$.
- $\mathbb{F}_{2^{r}} \cong \mathbb{F}_{2^{d}}[t] / f(t)$, where $f(t)$ is an irreducible polynomial of degree r / d.
- Elements in $\mathbb{F}_{2^{r}}$ can be represented by $\sum_{i=0}^{r / d-1} a_{i} t^{i}$, where a_{i} are from $\mathbb{F}_{2^{d}}$.

The Differential

Differential:

$$
\mathbf{x}^{\prime}+\overline{\mathbf{x}} \in \mathbb{F}_{2^{r}}^{n}
$$

where we randomly fix $\mathbf{x}^{\prime} \in \mathbb{F}_{2^{r}}^{n}$ and we let $\overline{\mathbf{x}} \in \mathbb{F}_{2^{d}}^{n}$ vary.

Probability of Successful Attack

Given: $\mathbf{y}=\left(y_{1}, \cdots, y_{0}\right) \in \mathbb{F}_{2^{r}}^{o}$ and choose an arbitrary $\mathbf{x}^{\prime} \in \mathbb{F}_{2^{r}}^{n}$. Question: Does there exist a reasonable small integer d such that there will also exist a $\overline{\mathbf{x}} \in \mathbb{F}_{2^{d}}^{n} \subset \mathbb{F}_{2^{r}}^{n}$ where $P\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)=\mathbf{y}$?

The attack principle

The attack principle

Probability of Successful Attack

- Given $\mathbf{y} \in \mathbb{F}_{2^{r}}^{0}$
- Choose $x^{\prime} \in \mathbb{F}_{2^{d}}^{n}$.
- $\mathcal{P}^{\prime}: \mathbb{F}_{2^{d}}^{n} \rightarrow \mathbb{F}_{2^{r}}^{0}$ given by $\mathcal{P}^{\prime}(\overline{\mathbf{x}})=\mathcal{P}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)$
- Assume that \mathcal{P}^{\prime} acts as a random map from $\mathbb{F}_{2^{d}}^{n} \rightarrow \mathbb{F}_{2^{r}}^{0}$.

Probability of Successful Attack

- $\left|\mathbb{F}_{2^{d}}^{n}\right|=2^{d \cdot n}$
- $\left|\mathbb{F}_{2^{r}}^{O}\right|=2^{r \cdot o}$
- The probability that $\mathcal{P}^{\prime}(\overline{\mathbf{x}}) \neq \mathbf{y}$ is $1-\frac{1}{2^{r \cdot 0}}$.

Probability of Successful Attack

- The outputs of \mathcal{P}^{\prime} are independent
- Exhausting every element of $\mathbb{F}_{2^{d}}^{n}$
- Estimated our desired probability as

$$
\left(1-\frac{1}{2^{r \cdot o}}\right)^{2^{d \cdot n}}=\left(\left(1-\frac{1}{2^{r \cdot o}}\right)^{2^{r \cdot o}}\right)^{2^{(d \cdot n)-(r \cdot o)}} \approx e^{-2^{(d \cdot n)-(r \cdot o)}}
$$

because $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1}$.

Estimated Probabilities for the LUOV Parameters Submitted

Security Level	r	$\mathbf{0}$	\mathbf{v}	\mathbf{n}	\mathbf{d}	Probability of Failure
II	8	58	237	295	2	$\exp \left(-2^{126}\right)$
IV	8	82	323	405	2	$\exp \left(-2^{154}\right)$
V	8	107	371	478	2	$\exp \left(-2^{100}\right)$

Table: Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of the Signature

Security Level	\mathbf{r}	$\mathbf{0}$	\mathbf{V}	\mathbf{n}	\mathbf{d}	Probability of Failure
II	48	43	222	265	8	$\exp \left(-2^{56}\right)$
IV	64	61	302	363	16	$\exp \left(-2^{1904}\right)$
V	80	76	363	439	16	$\exp \left(-2^{944}\right)$

Table: Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of the Signature and Public Key

The Form of $P\left(x^{\prime}+\bar{x}\right)$ I

- k th component of $\mathcal{P}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)$

$$
\tilde{f}_{k}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)=\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j, k}\left(x_{i}^{\prime}+\bar{x}_{i}\right)\left(x_{j}^{\prime}+\bar{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i, k}\left(x_{i}^{\prime}+\bar{x}_{i}\right)+\gamma_{k}=y_{k}
$$

Where $\alpha_{i, j, k}, \beta_{i, k}, \gamma_{k} \in \mathbb{F}_{2}$ and $x_{i}^{\prime} \in \mathbb{F}_{2 r}$.

The Form of $P\left(x^{\prime}+\bar{x}\right)$ II

$$
\begin{aligned}
\tilde{f}_{k}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)= & \sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j, k}\left(x_{i}^{\prime} x_{j}^{\prime}+x_{i}^{\prime} \bar{x}_{i}+x_{j}^{\prime} \bar{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i, k}\left(x_{i}^{\prime}+\bar{x}_{i}\right)+\gamma_{k} \\
& +\sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i, j, k} \bar{x}_{i} \bar{x}_{j} \\
= & y_{k}
\end{aligned}
$$

The quadratic terms have coefficients $\alpha_{i, j, k}$, which can only be 0 or 1 .

The Form of $P\left(x^{\prime}+\bar{x}\right)$ III

- We view these over $\mathbb{F}_{2^{d}}[t] / f(t)$
- So if $\frac{r}{d}=s, x_{i}^{\prime}=a_{s-1} t^{s-1}+\cdots+a_{0}$.
- Regroup the above equations of $\tilde{f}_{k}=y_{k}$ in terms of the powers of t.
- This means that the coefficient of $t^{i}, i=1 \cdots, s-1$ is a linear polynomial of the \bar{x}_{i}.

$P\left(x^{\prime}+\bar{x}\right)$

We have that

$$
\tilde{f}_{k}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)=\sum_{i=1}^{s-1} g_{i, k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right) t^{i}+Q_{k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)=y_{k}=\sum_{i=0}^{s-1} w_{i, k} t^{i}
$$

for some $w_{i, k} \in \mathbb{F}_{2^{d}}$, some linear polynomials $g_{i, k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right) \in \mathbb{F}_{2^{d}}\left[\bar{x}_{1}, \cdots, \bar{x}_{n}\right]$, and some quadratic polynomial $Q_{k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right) \in \mathbb{F}_{2^{d}}\left[\bar{x}_{1}, \cdots, \bar{x}_{n}\right]$

How We Use This

- Each \tilde{f}_{k} has $s-1$ linear equations $g_{i, k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)=w_{i, k}$, one for each power of t.
- $(s-1)$ o linear equations with n variables.
- This can be represented by $\mathbf{A x}=\mathbf{y}$.
- Our desired $\overline{\mathbf{x}}$ is in the solution space.

How we use this

- Each \tilde{f}_{k} will have an additional quadratic polynomial equation Q_{k} which must also be satisfied.
$Q_{k}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)=w_{0, k}$
- Each of these equations is over the small field $\mathbb{F}_{2^{d}}$.

Solution Space

- As the $(s-1)$ o linear equations to solve with n variables and these linear polynomials are essentially random and thus likely linearly independent, we have a solution space around the size of $n-\operatorname{rank}(A)=n-(s-1) o$.
- We just need one an element from here that also satisfies the quadratic polynomials.

Algorithms

- If we have more variables than equations, we use the method of Thomae and Wolf: "Solving underdetermined systems of multivariate quadratic equations revisited".
- System of o equations, $n-(s-1) o$ variables reduced to System of m equations m variables
$m=0-\left\lfloor\frac{n-(s-1) o}{o}\right\rfloor$.

Algorithms

- Guess for a certain number of the variables.
- Use algorithm XL with Wiedemann.

Degree of Regularity

- Use Theorem 2 from "Theoretical Analysis of XL over Small Fields" by Bo-yin Yang et al.
- For a system of m equations with n variables over \mathbb{F}_{q}, the degree of regularity is
$\left.D_{\text {reg }}=\min \left\{D:\left[t^{D}\right]\left((1-t)^{-n-1}\left(1-t^{q}\right)^{n}\left(1-t^{2}\right)^{m}\left(1-t^{2 q}\right)^{-m}\right)\right) \leq 0\right\}$
[u]p denotes the coefficient of term in the expansion of p.
E.g. $\left[x^{2}\right](1+x)^{4}=6$.

Complexity

- Use Proposition 3.4 from "Analysis of QUAD" Bo-yin Yang et al.
- Expected running time of $X L$ is roughly: $C_{X L} \sim 3 T^{2} \tau$
- $T=\binom{n+D_{\text {reg }}}{D_{\text {reg }}}$
- τ is number of terms in an equation.

Toy Example I

We will give a small toy example with the following parameters: $o=2, v=8, n=10, r=8, d=2$.
Here we will represent $\mathbb{F}_{2^{2}}$ by the elements $\left\{0,1, w_{1}, w_{2}\right\}$. We note that

$$
\mathbb{F}_{2^{8}} \cong \mathbb{F}_{2^{2}}[t] / f(t)
$$

where $f(t)=t^{4}+t^{2}+w_{1} t+1$.

Toy Example II

Consider the LUOV public key $\mathcal{P}: \mathbb{F}_{2^{8}}^{n} \rightarrow \mathbb{F}_{2^{8}}^{0}$ which for simplicity sake will be homogeneous of degree two:

$$
\begin{aligned}
\tilde{f}_{1}(\mathbf{x})= & x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{6}+x_{1} x_{7}+x_{1} x_{8}+x_{1} x_{9}+x_{2} x_{4}+x_{2} x_{6}+x_{2} x_{9} \\
& +x_{3}^{2}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{10}+x_{4}^{2}+x_{4} x_{7}+x_{4} x_{8}+x_{4} x_{9}+x_{4} x_{10} \\
& +x_{5} x_{6}+x_{6} x_{10}+x_{7}^{2}+x_{7} x_{8}+x_{7} x_{9}+x_{8} x_{9}+x_{8} x_{10}+x_{9}^{2}+x_{9} x_{10} \\
\tilde{f}_{2}(\mathbf{x})= & x_{1} x_{3}+x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{9}+x_{2} x_{3}+x_{2} x_{6}+x_{2} x_{7}+x_{2} x_{9}+x_{3}^{2}+x_{3} x_{4} \\
& +x_{3} x_{5}+x_{3} x_{6}+x_{3} x_{7}+x_{3} x_{9}+x_{4}^{2}+x_{4} x_{5}+x_{4} x_{6}+x_{4} x_{7}+x_{4} x_{10} \\
& +x_{5}^{2}+x_{5} x_{6}+x_{5} x_{7}+x_{5} x_{8}+x_{5} x_{10}+x_{6} x_{7}+x_{7} x_{9}+x_{9} x_{10}+x_{10}^{2}
\end{aligned}
$$

Toy Example III

We will attempt to find a signature for the message:

$$
\mathbf{y}=\left[\begin{array}{c}
w_{1} t^{3}+w_{2} t^{2}+w_{2} t \\
w_{2} t^{3}+w_{2} t^{2}+t
\end{array}\right]
$$

First we randomly select our \mathbf{x}^{\prime} as

$$
\mathbf{x}^{\prime}=\left[\begin{array}{c}
t^{3}+w_{2} t \\
w_{1} t^{3}+w_{2} t^{2}+w_{2} t \\
t^{3}+t+1 \\
w_{2} t^{2}+w_{1} \\
t^{3}+t^{2}+1 \\
w_{2} t^{3}+t^{2}+w_{2} t+w_{2} \\
w_{1} t^{3}+w_{2} t+w \\
w_{1} t^{2}+w_{2} t+1 \\
t^{3}+w_{2} t+w_{1} \\
w_{2} t+w_{2}
\end{array}\right]
$$

Toy Example IV

Next we compute $\mathcal{P}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right)=$

$$
\begin{aligned}
& {\left[\left(\bar{x}_{1}+w_{1} \bar{x}_{2}+\bar{x}_{3}+w_{1} \bar{x}_{5}+w_{2} \bar{x}_{6}+\bar{x}_{7}+w_{1} \bar{x}_{8}+\bar{x}_{9}+w_{2} \bar{x}_{10}\right) t^{3}\right.} \\
& \quad+\left(\bar{x}_{1}+w_{1} \bar{x}_{2}+\bar{x}_{3}+\bar{x}_{4}+\bar{x}_{5}+w_{1} \bar{x}_{6}+\bar{x}_{7}+w_{2} \bar{x}_{8}+w_{1} \bar{x}_{9}\right) t^{2} \\
& \quad+\left(w_{2} \bar{x}_{3}+w_{1} \bar{x}_{6}+w_{1} \bar{x}_{7}+w_{2} \bar{x}_{9}+w_{1} \bar{x}_{10}\right) t \\
& \quad+Q_{1}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right) \\
& \left(\bar{x}_{1}+\bar{x}_{2}+w_{1} \bar{x}_{3}+\bar{x}_{5}+\bar{x}_{8}\right) t^{3} \\
& \quad+\left(w_{1} \bar{x}_{1}+\bar{x}_{2}+\bar{x}_{6}+\bar{x}_{8}+w_{2} \bar{x}_{9}+w_{1} \bar{x}_{10}\right) t^{2} \\
& \quad+\left(w_{1} \bar{x}_{1}+w_{1} \bar{x}_{2}+w_{2} \bar{x}_{3}+\bar{x}_{4}+w_{1} \bar{x}_{5}+\bar{x}_{6}+w_{1} \bar{x}_{7}+\bar{x}_{9}+w_{2} \bar{x}_{10}\right) t \\
& \left.\quad+Q_{2}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)\right]
\end{aligned}
$$

Toy Example V

The linear part forms the matrix equation:

$$
\left[\begin{array}{cccccccccc}
1 & w_{1} & 1 & 0 & w_{1} & w_{2} & 1 & w_{1} & 1 & w_{2} \\
1 & w_{1} & 1 & 1 & 1 & w_{1} & 1 & w_{2} & w_{1} & 0 \\
0 & 0 & w_{2} & 0 & 0 & w_{1} & w_{1} & 0 & w_{2} & w_{1} \\
1 & 1 & w_{1} & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
w_{1} & 1 & 0 & 0 & 0 & 1 & 0 & 1 & w_{2} & w_{1} \\
w_{1} & w_{1} & w_{2} & 1 & w_{1} & 1 & w_{1} & 0 & 1 & w_{2}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3} \\
\bar{x}_{4} \\
\bar{x}_{5} \\
\bar{x}_{6} \\
\bar{x}_{7} \\
\bar{x}_{8} \\
\bar{x}_{9} \\
\bar{x}_{10}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
w_{2} \\
w_{2} \\
w_{2} \\
1
\end{array}\right]
$$

Toy Example VI

Since the solution space is small (dim 4), by quick search we find signature

$$
\sigma=\left[\begin{array}{c}
t^{3}+w_{2} t+1 \\
w_{1} t^{3}+w_{2} t^{2}+w_{2} t+w_{1} \\
t^{3}+t+w_{2} \\
w_{2} t^{2} \\
t^{3}+t^{2}+1 \\
w_{2} t^{3}+t^{2}+w_{2} t+1 \\
w_{1} t^{3}+w_{2} t+w_{1} \\
w_{1} t^{2}+w_{2} t+1 \\
t^{3}+w_{2} t+1 \\
w_{2} t
\end{array}\right]
$$

Some Experimental Results

- In order to make sure that finding a signature like above was not a fluke, we ran an experiment of creating a public key with parameters $r=8, o=5, v=20, n=25, d=2$. Generating 10,000 random documents, we were able to find using the method from the toy example a signature for every document.
- And in order to show that we achieve the expected ($s-1$) o equations, we ran an experiment for the given parameters for level II security $r=8, o=58, v=237, n=295$. We were successful.

Computing Attack's Complexity

- In the following slides we will compute the complexity of SDA against the various parameters of LUOV.
- We will also give the NIST complexity requirement for classical attacks (not quantum).
- We will show the number of equation and variables before applying the method of Thomae and Wolf, and those after applying the method.
- Then the number of variables guessed in the XL algorithm as well as the degree of regularity.

Level II Parameter Choice

NIST Classical Security Complexity Requirement 2^{146}

- $r=8, o=58, v=237, n=295$

Claimed Classical Security 2^{146}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{2}}$	58×121	56×56	24	7

- Complexity of Attack: 2^{107}
- $r=48, o=43, v=222, n=265$

Claimed Classical Security 2^{147}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{8}}$	43×50	42×42	3	19

- Complexity of Attack: 2^{135}

Level IV Parameter Choice

NIST Classical Security Complexity Requirement 2^{210}

- $r=8, o=82, v=323, n=405$

Claimed Classical Security 2^{212}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{2}}$	82×159	81×81	37	8

- Complexity of Attack: $2^{144.5}$
- $r=64, o=61, v=302, n=363$

Claimed Classical Security 2^{214}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{16}}$	61×180	59×59	2	31

- Complexity of Attack: 2^{202}

Level V Parameter Choice

NIST Classical Security Complexity Requirement 2^{272}

- $r=8, o=107, v=371, n=478$

Claimed Classical Security 2^{273}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{2}}$	107×157	106×106	51	9

- Complexity of Attack: 2^{184}
- $r=80, o=76, v=363, n=439$

Claimed Classical Security 2^{273}

Finite Field	Original eq \times var	New eq \times var	Variables Guessed	Degree of Regularity
$\mathbb{F}_{2^{16}}$	76×131	75×75	2	38

- Complexity of Attack: 2^{244}

Summarizing

- All LUOV schemes fail to meet the security level requirements.
- Level II schemes do not satisfy Level I requirement.
- The largest gap of security estimate is 89 bits.

Inapplicable on UOV

- UOV Public Key: $\mathcal{P}: \mathbb{F}_{2^{r}}^{n} \rightarrow \mathbb{F}_{2^{r}}^{o}$
- kth component of \mathcal{P} :

$$
\bar{f}_{k}(\mathbf{x})=\sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i, j, k} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i, k} x_{i}+\gamma_{k}
$$

- $\alpha_{i, j, k}, \beta_{i, k}$ and γ_{k} are randomly chosen from $\mathbb{F}_{2^{r}}$

Inapplicable on UOV

- Differential: $\mathbf{x}^{\prime}+\overline{\mathbf{x}}$ with $\mathbf{x}^{\prime} \in \mathbb{F}_{2^{r}}$ and $\overline{\mathbf{x}} \in \mathbb{F}_{2^{d}}$
- kth component of \mathcal{P}

$$
\begin{aligned}
\bar{f}_{k}\left(\mathbf{x}^{\prime}+\overline{\mathbf{x}}\right) & =\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j, k}\left(x_{i}^{\prime}+\bar{x}_{i}\right)\left(x_{j}^{\prime}+\bar{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i, k}\left(x_{i}^{\prime}++\bar{x}_{i}\right)+\gamma_{k} \\
& =\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j, k}\left(x_{i}^{\prime} x_{j}^{\prime}+x_{i}^{\prime} \bar{x}_{i}+x_{j}^{\prime} \bar{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i, k}\left(x_{i}^{\prime}+\bar{x}_{i}\right)+\gamma_{k} \\
& +\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j, k} \bar{x}_{i} \bar{x}_{j}=y_{k}
\end{aligned}
$$

Inapplicable on UOV

- $\alpha_{i, j, k}, \beta_{i, k}$ and γ_{k} can also be represented by a polynomial in $\mathbb{F}_{2^{d}}[t] / f(t)$
- multiplication from $\alpha_{i, j, k}, \beta_{i, k}$ and γ_{k} in \bar{f}_{k} will mix the degrees of the polynomial expression of \bar{x}_{i} 's in $\mathbb{F}_{2^{d}}[t] / f(t)$
- Comparing the coefficients of all degrees of t is useless.

Conclusion

We have seen that though LUOV is an interesting development of UOV, its newness hides its flaws. In particular

- There is a near certainty that the differential attack can be successful with a small enough subfield $\mathbb{F}_{2^{d}}$
- That this gives us many linear equations over this small subfield which can be used to solve for a signature
- The complexity of doing such is lower (sometime MUCH LOWER) than the NIST security levels for each proposed category.
- We are developing new interesting and promising attacks using different subset.

The End

Thanks and Any Questions?

Supported by Taft Fund, NIST and NSF

