New Results and Insighs on ForkAE

Elena Andreeva¹ Arne Deprez² Jowan Pittevils² Arnab Roy¹ Amit Singh Bhati² Damian Vizár⁵

Alpen-Adria University Klagenfurt, Austria

imec-COSIC, KU Leuven, Belgium

CSEM, Switzerland

NIST LWC workshop 2020

- 0. ForkAE: recap
- 1. Cryptanalysis of ForkSkinny
- 2. Implementation results
- 3. SAEF: security update
- 4. Extending the use case
- + New forkcipher encryption modes

ForkAE: Forkcipher

 $\approx\!\mathsf{Two}$ parallel TBC calls at lower cost

iterate-fork-iterate the well-cryptanalyzed SKINNY components

 \Rightarrow (r_{init}, r_0, r_1) configuration with $r_0 = r_1$

Primitive F	n	t	t+ K
ForkSkinny-64-192	64	64	192
ForkSkinny-128-192	128	64	192
ForkSkinny-128-256	128	128	256
ForkSkinny-128-288	128	128	288

3/21

Status of ForkSkinny

- No weakness till date from publicly known cryptanalysis
- It continues to benefit from the security margin of SKINNY
- The best attack on SKINNY covers $\approx 50\%$ of the total nr of rounds

Status of ForkSkinny

- No weakness till date from publicly known cryptanalysis
- It continues to benefit from the security margin of SKINNY
- The best attack on SKINNY covers $\approx 50\%$ of the total nr of rounds

ForkSkinny cryptanalysis (Bariant et al. ToSC 2020)

- ForkSkinny-128-256 (128-bit tweak, 128-bit key): 24 out of 48 rounds
- ForkSkinny-128-256 (no tweak): 26 rounds attacked
 - \checkmark Not part of the ForkAE family

General cryptanalysis (of forkcipher)

- ForkSkinny does not have the weaknesses of ForkAES
 - \checkmark <u>Reconstruction queries:</u> a specific of forkciphers
 - $\checkmark\,$ ForkAES had a weakness wrt to these, cryptanalysis exploited it
 - $\checkmark\,$ ForkSkinny does not have such reconstruction query weakness

General cryptanalysis (of forkcipher)

- ForkSkinny does not have the weaknesses of ForkAES
 - \checkmark <u>Reconstruction queries:</u> a specific of forkciphers
 - $\checkmark\,$ ForkAES had a weakness wrt to these, cryptanalysis exploited it
 - \checkmark ForkSkinny does not have such reconstruction query weakness

Remarks

- Reduced round instances should have $r_0 = r_1$
- ForkSkinny has comfortable secuirty margin
 - ✓ The nr of rounds can be reduced by ≥ 5, i.e. $r_0 = r_1 = 26$.
 - $\checkmark\,$ We are currently exploring further reduction

Portable SW implementations

• We started with: constant-time implementations at https://github.com/rweather/lightweight-crypto

- Improved decryption with preprocessed TKS:
 ✓ 38% less clock cycles
 - ✓ 1kB smaller ROM size
 - $\checkmark~$ 252-696 bytes higher RAM usage

Table-based SW implementations

- Suitable for platforms without a cache, e.g. Cortex-M0
- Round function \rightarrow 18 lookups + 19 XOR

- Performance on Cortex-M0 (wrt our portable implementations):
 - $\checkmark\,$ Enc / Dec up to 20% / 25% faster
 - $\checkmark\,$ Increased memory use: 4 tables of 1kB each
 - $\checkmark\,$ Memory overhead decrease: store 1 table with slight loss of performance

Neon SIMD SW implementations

- Implementation for Neon SIMD on Arm Cortex-A9
- 128-bit instances (S-box in parallel in a single branch):
 √ 30% less clock cycles
 - $\checkmark~$ 0.5 kB reduction in ROM size
 - ✓ RAM size equal
- 64-bit instance (S-box in both branches in parallel):
 ✓ 29 % less clock cycles
 - ✓ ROM size approx. equal
 - $\checkmark\,$ RAM size increased

Low-area ForkSkinny HW architectures

Word-based architectures results

ForkReg

- Enc and Dec
- Best speedup
- 1.09-1.25 area of Skinny
- up to 129% throughput of Skinny

Restart

- Encryption only
- Best area
- 0.97-1.11 area of Skinny
- up to 79% throughput of Skinny

Retrace

- Enc and Dec
- Goldilocks zone
- 0.93-1.04 area of Skinny
- up to 126% throughput of Skinny

results obtained w/ NanGate 45NM library, no clock gating or latches, datapath sizes of 1/16 block size

More about implementations

- SW implementations
 - $\checkmark\,$ A. Deprez Master Thesis 2020, "Optimized software implementations for ForkAE"
 - ✓ Check https://github.com/byt3bit/forkae
 - ✓ Updated results will be presented at CARDIS 2020
 - ✓ Implementations benchmarked at https://lwc.las3.de/
- HW implementations
 - ✓ J. Pittevils Master Thesis 2020, "Low-area Optimized Hardware Implementations for ForkAE"
- Questions to antoon.purnal@kuleuven.be

https://github.com/byt3bit/forkae/

More about implementations

- SW implementations
 - $\checkmark\,$ A. Deprez Master Thesis 2020, "Optimized software implementations for ForkAE"
 - ✓ Check https://github.com/byt3bit/forkae
 - ✓ Updated results will be presented at CARDIS 2020
 - ✓ Implementations benchmarked at https://lwc.las3.de/
- HW implementations
 - $\checkmark\,$ J. Pittevils Master Thesis 2020, "Low-area Optimized Hardware Implementations for ForkAE"
- Questions to antoon.purnal@kuleuven.be

https://github.com/byt3bit/forkae/

SAEF: Security

n/2-bit nonce-based AE security

$$\begin{aligned} Adv_{SAEF}^{\mathsf{priv}}(\mathcal{A}) \leq & Adv_F^{\mathsf{PRFP}}(\mathcal{D}) + 2\frac{(\sigma-q)^2}{2^n} \\ Adv_{SAEF}^{\mathsf{auth}}(\mathcal{A}) \leq & Adv_F^{\mathsf{PRFP}}(\mathcal{D}) + \frac{2(\sigma-q+1)^2}{2^n} + \frac{\sigma(\sigma-q)}{2^n} + \frac{q_v(q+2)}{2^n} \end{aligned}$$

Andreeva, Deprez, Pittevils, Roy, Singh, Vizár New Results and Insighs on ForkAE

SAEF: Security

n/2-bit OAE security [ASV, SAC 2020]

$$egin{aligned} & \mathsf{Adv}_{\mathsf{SAEF}}^{\mathsf{oprp}\parallel\mathsf{prf}}(\mathcal{A}) \leq & \mathsf{Adv}_{\mathsf{F}}^{\mathsf{PRFP}}(\mathcal{D}) + rac{3\cdot\sigma^2}{2^{n+1}} \ & \mathsf{Adv}_{\mathsf{SAEF}}^{\mathsf{mr-auth}}(\mathcal{A}) \leq & \mathsf{Adv}_{\mathsf{F}}^{\mathsf{PRFP}}(\mathcal{D}) + rac{\sigma^2 + 4\cdot q_v}{2^n} \end{aligned}$$

Against attacker repeating (i.e., misusing) nonces:

Against attacker repeating (i.e., misusing) nonces:

 \Rightarrow Leaks length of common *n*-aligned prefix of plaintexts if *N*, *A* repeat

 \Rightarrow Forging is as hard as with unique nonces

 $\checkmark~$ e.g. 0.8 complexity of COLM-SKINNY

Safe for blockwise (adaptive) processing [EV, FSE 2017]

 $\checkmark\,$ Constrained environment (latency, limited memory, $\dots)$

Security under nonce misuse

- \checkmark Integrity undamaged
- $\checkmark\,$ Well-defined privacy level

SAEF: Case studies

Nonce misuse in Lightweight applications

- \checkmark Cheap HW platforms, forced resets, fault attacks etc
- $\checkmark\,$ Chosen Prefix, Secret Suffix attack on OAE (HTTPS) [HRRV 15]
- $\checkmark\,$ Possibly chosen prefix constant length \Rightarrow CPSS shut down (MQTT)
- $\checkmark\,$ OAE-secure AE is a good, pragmatic solution

SAEF: Case studies

Nonce misuse in Lightweight applications

- \checkmark Cheap HW platforms, forced resets, fault attacks etc
- ✓ Chosen Prefix, Secret Suffix attack on OAE (HTTPS) [HRRV 15]
- $\checkmark\,$ Possibly chosen prefix constant length \Rightarrow CPSS shut down (MQTT)
- \checkmark OAE-secure AE is a good, pragmatic solution

Blockwise encryption

 $\checkmark\,$ Large data (temp. firmware image, graphics assets, maps etc) often on ext. flash

18/21

- $\checkmark\,$ Blockwise encryption typically unavoidable
- ✓ OAE-secure AE is safe to use

Extending the use case

ForkAE: an efficient candidate for lightweight applications, especially with predominantly short messages

Extending the use case

ForkAE: an efficient candidate for lightweight applications, especially with predominantly short messages

but also for defense in depth, offering the interesting combination of light weight and robustness.

Efficient encryption with Forkcipher

• Generalized counter mode (GCTR)

- $\checkmark\,$ random IV AND/OR nonce
- $\checkmark\,$ tweakable forkcipher
- $\checkmark\,$ many ways to generate tweak/block input
- ✓ direct use (encryption only)
- $\checkmark\,$ as a component (such as in Deoxys II)

• Systematic study of GCTR variants [under submission]

- $\checkmark\,$ high efficiency, up to BBB security
- \checkmark stay tuned!

Thank you!

damian.vizar@csem.ch