NTS-KEM — Round 2 Submission

M.R. Albrecht¹, C. Cid¹, K.G. Paterson², CJ Tjhai³, M. Tomlinson³

¹Information Security Group & Institute for Cyber Security Innovation, Royal Holloway University of London, Egham, Surrey, UK

> ²Department of Computer Science, ETH Zurich Zurich, Switzerland

> > ³PQ Solutions Ltd, 50 Liverpool Street, London, UK

Second NIST PQC Standardization Conference — August 2019

Introduction

- Code-based cryptography
 - Goppa codes
 - McEliece public-key encryption (PKE)
 - ★ One-way (OW) secure
 - $\star\,$ Difficult for an attacker to recover the underlying message m for some ciphertext c
- NTS-KEM is a key-encapsulation mechanism (KEM)
 - McEliece scheme combined with a transform akin to Fujisaki-Okamoto/Dent transform
 - Resistant to chosen ciphertext attacks (IND-CCA secure)
 - New for round 2 implicit rejection during decryption

Algorithm Summary (unchanged from round 1)

- The key-generation, encapsulation and decapsulation algorithms are largely the same as those of McEliece's scheme
- The main difference: shortening of ciphertext
 - Property: the sum of two codewords is another codeword
 - ▶ $\mathbf{e} = (\mathbf{e}_a \mid \mathbf{e}_b \mid \mathbf{e}_c)$, where $\mathbf{e}_a \in \mathbb{F}_2^{k-\ell}$, $\mathbf{e}_b \in \mathbb{F}_2^{\ell}$ and $\mathbf{e}_c \in \mathbb{F}_2^{n-k}$
 - On encapsulation, set $\mathbf{m} = (\mathbf{e}_a \mid \mathbf{k}_e) \in \mathbb{F}_2^k$ where $\mathbf{k}_e = H_\ell(\mathbf{e}) \in \mathbb{F}_2^\ell$:

$$\begin{aligned} \mathbf{c} &= (\mathbf{m} \mid \mathbf{m} \cdot \mathbf{Q}) + \mathbf{e} \\ &= (\mathbf{e}_a \mid \mathbf{k}_e \mid (\mathbf{e}_a \mid \mathbf{k}_e) \cdot \mathbf{Q}) + (\mathbf{e}_a \mid \mathbf{e}_b \mid \mathbf{e}_c) \\ &= (\mathbf{0}_a \mid \mathbf{k}_e + \mathbf{e}_b \mid (\mathbf{e}_a \mid \mathbf{k}_e) \cdot \mathbf{Q} + \mathbf{e}_c) \\ &= (\mathbf{0}_a \mid \mathbf{c}_b \mid \mathbf{c}_c). \end{aligned}$$

 Discard the "a" section in the private-key and for syndrome computation in decapsulation

Implicit Rejection (new for round 2)

- The "Classic McEliece Comparison Task Force" suggested¹ using implicit rejection in case of decryption failure
- We modified our round 1 proposal to perform implicit rejection
- This is done in a way that is easy to implement in a constant-time manner
- Adds a 32-byte string to the private key, marginally increasing private key size; slightly changes running times
- Small tweaks to our existing IND-CCA proof were needed to accommodate the change
- Should ease production of QROM proofs

https://classic.mceliece.org/nist/vsntskem-20180629.pdf

Parameter Sets (updated from round 1)

Scheme	NIST category	Security target [†]	n	k	d	<i>pk</i> (bytes)	<i>sk</i> (bytes)*	<i>ct</i> (bytes)
NTS-KEM (12,64)	1	128	4096	3328	129	319, 488	9,248	128
NTS-KEM (13,80)	3	192	8192	7152	161	929, 760	17,556	162
NTS-KEM (13,136)	5	256	8192	6424	273	1, 419, 704	19,922	253

[†]All classical security; ^{*}increased by 32 bytes from round 1 submission (no further changes)

NTS-KEM Security: IND-CCA Security (essentially unchanged from round 1)

Theorem

If there exists a (t, ε) -adversary \mathcal{A} winning the IND-CCA game for NTS-KEM, then there exists a $(2t, \varepsilon - \frac{q_D}{2^\ell})$ -adversary \mathcal{B} against the OW security of the McEliece PKE scheme with same code parameters. Here q_D is the number of queries made by \mathcal{A} to its decapsulation oracle. The proof is in the Random Oracle Model.

• Tight security reduction

- Standard Fujisaki-Okamoto conversion is not tight
- ▶ HHK17² tight conversion may result in larger ciphertext
- Some tweaks were needed to the proof of our round 1 scheme to handle implicit rejection

NIST 2nd PQC Conf.

²D. Hofheinz, K. Hövelmanns, and E. Kiltz, A modular analysis of the Fujisaki-Okamoto transformation, TCC 2017, Part I (pp. 341–371), Springer, Heidelberg, 2017 ← □ → ← ⑦ → ← ≧ → ← ≧ → ∈ ≧ → ≧

NTS-KEM Security: Parameter Estimates (unchanged from round 1)

- Simplistic Information Set Decoding (ISD) analysis to derive minimum m and τ value pair to reach a target work-factor $N(m, \tau) \approx {n \choose k} / {n-\tau \choose k}$
 - $m \ge 12, \ \tau \ge 42, \ N(m, \tau) \ge 2^{128}$
 - $m \ge 13$, $\tau \ge 53$, $N(m, \tau) \ge 2^{192}$
 - $m \ge 13$, $\tau \ge 90$, $N(m, \tau) \ge 2^{256}$
- Using more recent results of BJMM algorithm³, the minimum *m* and τ pairs are:
 - Work-factor 2¹²⁸: m = 12 and $\tau = 64$, time-complexity⁴: 2^{158.4}
 - Work-factor 2¹⁹²: m = 13 and $\tau = 80$, time-complexity: 2^{239.9}
 - Work-factor 2^{256} : m = 13 and $\tau = 136$, time-complexity: $2^{305.1}$
- The above estimates are conservative

 $^{^{3}}$ L. Both and A. May. Optimizing BJMM with Nearest Neighbors: Full Decoding in $2^{21n/2}$ and McEliece Security. The Tenth International Workshop on Coding and Cryptography 2017

⁴D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision decoding. Advances in Cryptology CRYPTO 2011, pages 743–760, Santa Barbara, CA, USA ← □ → ← (→ → + (→ → + (→ → + (→ + +)))))

NTS-KEM Security: Quantum Attacks (unchanged from round 1)

- Best quantum attack: application of Grover's algorithm and quantum random walks to speed up ISD algorithms
- Bernstein⁵ showed that Prange's ISD can be done in about

$$c^{(1/2)n/\log n}$$
 iterations, $c = 1/\left(1 - \frac{k}{n}\right)^{1 - \frac{k}{n}}$

where each iteration requires $O(n^3)$ qubit operations

- Kachigar and Tillich⁶ considered how to speed up some of the more advanced ISD algorithms on quantum computers
 - Small improvement over Bernstein

NIST 2nd PQC Conf.

8 / 12

⁵D. J. Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, pages 73–80, 2010.

NTS-KEM Advantages (unchanged from round 1)

Strong security guarantee

- Conservative proposal of McEliece variant, nearly 40 years of attention from cryptographic community
- Tight relationship between IND-CCA security of NTS-KEM and the problem of inverting McEliece PKE scheme
- Simple and well-understood mathematical problem
- Conservative parameter set, likely to offer a reasonable security margin within the aimed security categories
- Long-term post-quantum security
 - Best-case quantum attack offers at best a quadratic speed-up on classical ISD

NTS-KEM Advantages (ctd) (unchanged from round 1)

- High-degree of flexibility in the parameter set
 - Easy to consider potential trade-off between performance and security
 - Parameters may be set deliberately low to test any new proposed cryptanalytic technique
- Good long-term keys
 - Deterministic decoding in decapsulation algorithm
- Compact ciphertext size
- Efficient operations

NTS-KEM Disadvantages (updated from round 1)

- Relatively large public-key
- NTS-KEM does not (yet) have a QROM security proof
- NTS-KEM does not (yet) have a constant-time implementation

We look forward to further comments and open collaboration to help develop NTS-KEM

https://nts-kem.io