On the Security Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis

Dhiman Saha¹ Yu Sasaki² Danping Shi^{3,4} Ferdinand Sibleyras⁵, Siwei Sun^{3,4} Yingjie Zhang^{3,4}

¹de.ci.phe.red Lab, Department of Electrical Engineering and Computer Science, IIT Bhilai

²NTT Secure Platform Laboratories

³State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

⁴University of Chinese Academy of Sciences

⁵Inria

NIST Lightweight Cryptography Workshop 2020

High-level Description - AEAD

- Designed by Hongjun Wu and Tao Huang
- ► A small variant of JAMBU [WH15]
- A family of AEAD schemes
- Currently a Round-2 candidate in NIST LWC

Table: Security goals of TinyJAMBU with unique nonce

Version	Encryption	Authentication
TinyJAMBU-128	112-bit	64-bit
TinyJAMBU-192	168-bit	64-bit
TinyJAMBU-256	224-bit	64-bit

Reference:

WH15 - JAMBU Lightweight Authenticated Encryption Mode and AES-JAMBU. Submission to CAESAR, 2015

Step 1: Initialization

Inside Init. (Key Setup + Nonce Setup)

 $0 \xrightarrow{128}$

Nonce

 $\mathcal{P}_K, \hat{\mathcal{P}}_K \to \text{Keyed Permutations}$

Step 2: Associated Data Processing

Step 3: Encryption

Step 4: Finalization

The Three Variants of TinyJAMBU

AFAD		Sizes	# of rounds			
ALAD	State	Key	Nonce	Tag	$\mathcal{P}_{\mathcal{K}}$	$\hat{\mathcal{P}}_{\mathcal{K}}$
TinyJAMBU-128	128	128	96	64	384	1024
TinyJAMBU-192	128	192	96	64	384	1152
TinyJAMBU-256	128	256	96	64	384	1280

- ▶ Note: The number of rounds of $\hat{\mathcal{P}}_K$ is much larger than that of \mathcal{P}_K
- Used in Key Setup and Encryption

The Internal Permutation

- ► NLFSR based keyed-permutation
- ► Computes only a single NAND gate as a non-linear component per round

Previous Cryptanalysis and Research Challenges

Cryptanalysis Courtesy: Designers

Strategy

Counts the number of **active AND** gates to find differential and linear trails with the minimum of such active gates by MILP

Why is this insufficient? → Fast but inaccurate

- ▶ Ignores the correlation between multiple AND gates which can impact probabilities of the differential or linear trails [KLT15, AEL+18]
- Designers have ignored effect of differentials which can amplify the probabilities of the trails [AK18]
- For linear cryptanalysis designer only analyzed internal permutation assuming access to all input bits

AK18 - Ankele and Kölbl. Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis. SAC 2018

[▶] KLT15 - Kölbl et al. Observations on the SIMON block cipher family. CRYPTO 2015

[►] AEL+18 - Ashur et al. Cryptanalysis of MORUS ASIACRYPT 2018

A Note on Existing Literature on MILP Modeling

► Techniques exists to evaluate the exact probability by limiting the search space to only valid trails [SHW+15a, SHW+15b]

What is the issue? → **Accurate but too slow**

- Such models involve too many variables and constraints
- Cannot be solved in practical time
- Good for verifying the validity of a given trail
- ▶ Not so efficient to find optimal ones [SHW+15a]

[►] SHW+15b - Sun et al. Extending the applicability of the mixed- integer programming technique in automatic differential cryptanalysis. ISC 2015

SHW+15a - Sun et al. Constructing mixed-integer programming models whose feasible region is exactly the set of all valid differential characteristics of SIMON ePrint 2015

A Note on Existing Literature on MILP Modeling

► Techniques exists to evaluate the exact probability by limiting the search space to only valid trails [SHW+15a, SHW+15b]

What is the issue? → **Accurate but too slow**

- Such models involve too many variables and constraints
- Cannot be solved in practical time
- Good for verifying the validity of a given trail
- ▶ Not so efficient to find optimal ones [SHW+15a]

Our Motivation: Strike a good balance of efficiency and accuracy while modeling

SHW+15b - Sun et al. Extending the applicability of the mixed- integer programming technique in automatic differential cryptanalysis. ISC 2015

SHW+15a - Sun et al. Constructing mixed-integer programming models whose feasible region is exactly the set of all valid differential characteristics of SIMON. ePrint 2015

Our Contributions

Identifying Issues With Simple MILP Model

What happens in the simple model?

If there is a difference on at least one of the two input bits, the output of the AND gates has a difference with probability 2^{-1} or does not with probability 2^{-1}

- It considers independently every AND gate and
- Treats every AND gate in the same way

Table: Restrictions on the values of a and b in $a \cdot b = z$ when $\Delta z = 1$.

Δa	Δb	$\Delta z = 1$ iff
0	0	Never
0	1	a = 1
1	0	b=1
1	1	a = b

Simple model fails to capture these restrictions

Introducing Refined Model

Main Observation

The same value, as it is shifted, will enter twice in two different AND gates.

The Internal State $(S_{127}, \dots S_0)$

S ₁₂₇	S_{100}	S_{85}	S_{70}	S_0
	(a)	(b)	(c)	

S_{85} Enters AND gate Twice (First: $b \cdot c$)

After 15 rounds (Second: $a \cdot b$)

First Order Correlations

Difference Difference
$$\Delta a=1$$
 a Δab $\Delta b=0$ b Δbc

Case-1:
$$b=0$$
 $\Delta ab=\Delta bc=0$ Probability $=2^{-1}$

Case-1:
$$b=0$$

$$\Delta ab = \Delta bc = 0$$
Probability $=2^{-1}$
Case-2: $b=1$

$$\Delta ab = \Delta bc = 1$$
Probability $=2^{-1}$

Difference Difference
$$\Delta a=1$$
 a Δab $\Delta b=0$ b Δbc $\Delta c=1$ c

Case-1:
$$b = 0$$

$$\Delta ab = \Delta bc = 0$$

Probability
$$=2^{-1}$$

Case-2:
$$b = 1$$

$$\Delta ab = \Delta bc = 1$$

Probability
$$=2^{-1}$$

In this scenario Refined model

- Forces that both differences jointly propagate, or not, and
- ▶ Only counts this as a **single** active gate.

MILP model variables:

- d_a modelizes Δa
- d_{ab} modelizes Δab
- γ_{abc} indicates if there's a correlation between the two AND gates ab and bc.

Finally

Subtract all values γ_{abc} in the objective function to only count this **once**, whereas the simple model would count two active gates.

- It adds additional constraints on top of the simple model
- All chained AND gates are recorded

Example Recorded Chains -
$$\{(d_{ab}, d_a, d_b), (d_{bc}, d_b, d_c), \dots\}$$

Then for all consecutive couples $((d_{ab}, d_a, d_b), (d_{bc}, d_b, d_c))$ the following constraint is added:

$$\gamma_{abc} = d_a \overline{d_b} d_c$$

$$d_{ab} - d_{bc} \leq 1 - \gamma_{abc}$$

$$d_{bc} - d_{ab} \leq 1 - \gamma_{abc}$$

Differential Cryptanalysis

Trail Types in TinyJAMBU Submission Doc

- Designers searched for the differential trail that has the minimum number of active AND gates in the simple model
 - Type 1: Input differences only exist in the 32 MSBs. No constraint on the output.
 - Type 2: No constraint on the input. Output differences only exist in the 32 MSBs.
 - Type 3: Both of the input and output differences only exist in the 32 MSBs.
 - Type 4: No constraint.

Designers Claim

Proven Wrong in Refined Model

- ► Max. probability of the 384-round trail of Type 3 is 2⁻⁸⁰
- ► Max. probability of the 320-round characteristic of Type 4 is 2⁻¹³

Attacks for the AEAD Setting

Forgery for TinyJAMBU Mode

▶ Attack the nonce setup or

- The associated data processing
- ▶ Recall $\mathcal{P}_K \rightarrow 384$ Rounds
- Use Type 3 trails

Exploiting
$$(\Delta_i \| 0^{96}) \xrightarrow{\mathcal{P}_K} (\Delta_{i+1} \| 0^{96})$$
 with probability p

- ▶ Also makes the case for MAC reforgeability [BC09]
- ▶ We also look at cluster of multiple trails unlike designers

[▶] BC09 - Black and Cochran. MAC reforgeability. FSE 2009

Observations on Full 384 Rounds

- Found contradiction for simple model
- ► Refined model reports 88 active AND gates

- ▶ 14 couples are correlated
- Prob. = $2^{-(88-14)} = 2^{-74}$

103 distinct differential trails					Overa	all Dif	ferent	tial Pr	ob.	= 2
	Probability	2^{-74}	2^{-75}	2^{-76}	2^{-77}	2^{-78}	2^{-79}	2^{-80}		
	# Trails	1	5	9	14	20	24	30		

-70.68

Differential Cryptanalysis of 338 Rounds

- Find largest number of rounds with security less than 64 bits
- ► Trail found with 76 active AND gates

- ► Correlation of two AND gates occurs 12 times
- Prob. = $2^{-(76-12)} = 2^{-64}$

```
80104912
 Input:
          \Delta S_{127} 0
                                  00000000
                                               00000000
                                                           00000000
         \Delta S_{255..128}
                      00104c12
                                               91000810
                                                           40092240
                                  24800628
          \Delta S_{383,256}
                      00000000
                                  00000200
                                              81040000
                                                           04010200
         \Delta S_{465..338}
                      00802041
                                                           00000000
Output:
                                  00000000
                                              00000000
```

24 distinct di	ifferential t	rails			0	verall	Diff	erent	ial Pr	ob.	= 2-
	Probability	2^{-64}	2^{-66}	2^{-67}	2^{-68}	2^{-69}	2^{-70}	2^{-71}	2^{-72}		
	# Trails	1	2	4	4	4	5	4	4		

-62.68

Attacks for the Underlying Permutation

	Unrestricted Differentials					
► No restriction on the input or output	Rounds	192	320	384		
► Type 4 as per TinyJAMBU submission	Designers (Simple)	4	13	-		
document	Ours (Refined)	4	12	19		

Type 4 Found with r	Р	rob. = 2^{-19}		
Input:	 80000000		00000000 0000004	
Output:	 00000000 81020000		00000000	

► Trails experimentally **verified**¹ with conforming pairs

¹https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu

Attacks for the Underlying Permutation

	Pa	rtly Re	estric [.]	ted Di	ifferer	itials
	Rounds	256	320	384	448	512
► Type 1 (Input restricted)	Designers (Simple)	22	33	45	55	68
Type I (input restricted)	Ours (Refined)	20	29	41	51	64?
► Type 2 (Output restricted)	Round Designers (Ours (Re	Simple	38	8 4	_	

- Note Type 1 Score is improved for all rounds
- ► Combining Type 1 and 2 for forgery (384 Rounds) as suggested in submission document
 - ▶ Designers $\rightarrow 2^{-73}$
 - Ours $\rightarrow 2^{-69}$

Linear Cryptanalysis

Finding Better Linear Trails

Linear trails of TinyJAMBU carrying the correlation of the tag

► We can adapt the **same idea** of correlated AND gates to refine our model to look for better linear approximations

Refined Analysis for Partially Restricted Keyed Permutation

- ► The best linear trails were consistently having **no** correlated gates
- ► Score of the best linear trail with unrestricted input, restricted output:

Rounds	256	320	384	448	512
Designers	12	16	22	26	29
Ours (Refined)	10	15	22	27?	46?

Linear Bias of the Tag in the AEAD Setting

- ▶ Bias 2⁻⁴¹ optimal linear trail for 384 rounds found with the refined model
- Does not contradict the authors' claims

```
mS_{127..0}
                                                     00000000
 Input:
                    00000000
                               41100081
                                          00000000
         mS_{255...128}
                   00408000 41120491
                                          02008024
                                                     08000088
         mS_{383..256}
                    30c80024 41804890
                                          00449144
                                                     80000089
Output:
       mS_{511..384}
                    00000000
                               00022890
                                          00000000
                                                     00000000
```

- First 3rd-Part Cryptanalysis of TinyJAMBU
- ▶ Refined model efficiently finds highly accurate differential and linear trails
- With the refined model, we found
 - ▶ A forgery attack with complexity 2^{62.68} on 338 rounds
 - ► A differential trail with probability 2^{-70.68} for the full 384 rounds
- ► Security margin of TinyJAMBU is smaller than originally expected
 - ▶ 12% with respect to the number of unattacked rounds
 - Less than 8 bits in the data complexity for the full rounds.
- Refined model for the linear cryptanalysis found the better bias for some number of rounds.
- ▶ One simple solution would be to increase the number of rounds of the small version, $\mathcal{P}_{\mathcal{K}}$ from 384 to 512 rounds.
- Using the refined model may lead to a better choice of tap positions with respect to DC/LC

Image Source: Google

Work **initiated** during group discussion sessions of ASK 2019, Japan **Accepted** at IACR Trans. on Symmetric Cryptology Volume 2020, Issue 3.

The source code for finding conforming pairs and the MILP trails search can be found here https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu