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Motivation 

Lightweight Authenticated Encryption Design 

• Block cipher based. 

• Rate-1. 

• Small state size (close to (n + κ)-bit). 

• Simple design (simple operations like XOR, shifts and rotations). 
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COunter Mode Encryption with authentication Tag 

Design Summary 

• Rate-1 and Feedback-based authenticated encryption mode. 

• Combined feedback function: 

input is a function of current output and next plaintext block. 

• Nonce and block counter-based rekeying. 

• Parametrized by the block size, n ∈ {64, 128}. Tag size t = n. 

• Two variants: 

� COMET-128: Here n = 128, key size κ = 128, nonce size r = 128. 

� COMET-64: Here n = 64, key size κ = 128, nonce size r = 120. 
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COMET : High-level Overview 

Nonce-based Initial State Derivation 

• For COMET-128: 

(Y0, Z0) := (K, ICK(N)) 

• For COMET-64: 

(Y0, Z0) := (ICK(0), K ⊕ Nk032) 
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COMET : High-level Overview 

Associated Data Processing 
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COMET : High-level Overview 

Plaintext Processing 

Ciphertext processing is symmetrically defined. 
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COMET : High-level Overview 

Tag Generation 
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COMET : Design Features 

Design Features 

• Design simplicity: Only requires shift and XOR operations apart from 

block cipher calls. 

• Small state size: Possibility of close to (n + κ)-bit state size in area 

optimized implementation. 

• Inverse free: No need for block cipher decryption. 

• Dynamic key updation: No two blocks share the same key non-trivially. 

• Efficiency: Single-pass scheme. 
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COMET : Recommendations 

Submissions to NIST LwC Standardization Project 

• COMET-128 AES-128/128 instantiated with AES-128/128. [Primary] 

• COMET-128 CHAM-128/128 instantiated with CHAM-128/128. 

• COMET-64 Speck-64/128 instantiated with Speck-64/128. 

• COMET-64 CHAM-64/128 instantiated with CHAM-64/128. 
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COMET : Security Claims 

Submissions Confidentiality Integrity 
Time Data (in bytes) Time Data (in bytes) 

COMET-128 AES-128/128 

COMET-128 CHAM-128/128 
COMET-64 Speck-64/128 
COMET-64 CHAM-64/128 

2119 

2119 

2119 

2119 

264 

264 

264 

264 

2119 

2119 

2112 

2112 

264 

264 

245 

245 

We focus on the security of COMET-128 . 
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COMET-128 : Security Model 

AEAD Security Game 

• Indistinguishability game between the ideal system O0 and real system O1, 

where 

O0 := ($, ⊥, IC±) O1 := (COMET-128.EK, COMET-128.EK, IC
±). 

• Advantage of any adversary A against COMET-128 is defined as: 

Advaead 
COMET-128(A ) := 

���Pr h i h 
= 1 

i��� . O1 O0 A = 1 − Pr A 

• A is computationally unbounded, but bounded in number of queries to its 

oracle. 

• A operates under two restrictions: 

� Nonce-respecting: No two encryption query share the same nonce. 

� Non-trivial forger: An encryption query (N, A, M) yields (C , T ), a 

decryption query (N, A, C , T ) is not allowed. 
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COMET-128 : Security Result 

Theorem 

< 2127 For σe , σd , qp < 2127, and (qe , qd , σe , σd , qp )-adversary A we have 

Advaead 4σc 
2 14σc qp 3σc 

2 3.01qp 4σc qc 6qp σd 
COMET-128(A ) ≤ + + + + + + 

2256 2249 2128 2121 2128 264 2188.5 

• qe and qd denote the number of queries to COMET-128.EK and 

COMET-128.DK, respectively. 

• σe and σd denote the sum of input (associated data and message) lengths 

across all encryption and decryption queries, respectively; 

qc = qe + qd and σc = σe + σd . 

• qp denotes the number of direct queries to the block cipher. 
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COMET-128 : Security Proof Sketch 

Proof tool: Coefficient-H Technique 

• Concentrates on the query-response tuple, called the transcript, generated 

by A ’s interaction with the oracle at hand. 

• Let Θ1: transcript random variable corresponding to O1. 

• Let Θ0: transcript random variable corresponding to O0. 

• Identify a set of bad transcripts, Ωbad. 

• Compute Pr [Θ0 ∈ Ωbad] ≤ �bad. 

Pr [Θ1 = ω] • Show that ≥ (1 − �ratio) for all ω /∈ Ωbad. 
Pr [Θ0 = ω] 

• Then, Advaead 
COMET-128(A ) ≤ �bad + �ratio. 
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COMET-128 : Security Proof Sketch 

Notational Conventions 

• Variables in encryption queries are defined as per the figures. 

• Variables in decryption queries are defined analogously, topped with a bar. 

• Variables in primitive queries are defined analogously, topped with a hat. 

Oracle description 

• Real oracle: Faithfully responds to encryption, decryption and primitive 

queries. 

• Ideal oracle: 

For the encryption query: samples X1, . . . , X`, T ←$ {0, 1}n, and sets 

(Yj , Cj ) = %(Xa+j+1, Mj ) for all 0 ≤ j ≤ m. Sets Yj = Xj ⊕ Aj for 

1 ≤ j ≤ a. Returns (C, T). 

For decryption query: Returns ⊥ symbol. 

For primitive query: Responds faithfully using IC± . 

• After the query phase, both the oracles release all encryption query 

internal variables and the secret key. 13 



COMET-128 : Security Proof Sketch 

Identifying bad events 

• Kcoll (key guessing/recovery): 

B1: ∃i ∈ [qe ], j ∈ [m i ], such that Zj
i = K. 

B2: ∃i ∈ [qd ], j ∈ [ ¯ i ], such that Z̄i m j = K. 

B3: ∃i ∈ [qp ], such that Zbi = K. 

B4: ∃i ∈ [qe ], such that Zi 
0 = ∗k0n/2 . 

B5: ∃i ∈ [qd ], such that Z̄i 
0 = ∗k0n/2 . 

i0 Ni0 B6: ∃(i , j) ∈ [qe i ], (i 0 , j 0) ∈ [qd ] × [ ¯ ], such that Ni = ¯] × [m m 6 and 

Zi Z̄i0 = j j0 . 

• EEmatch (encryption-encryption state matching): 

B7: ∃(i , j) ∈ [qe ] × [m i ], (i 0 , j 0) ∈ [qe ] × [m i
0 
], such that 

(Zi
j , Yj

i ) = (Zi
j

0
0 , Yj

i
0
0 
). 

B7: ∃(i , j) ∈ [qe ] × [m i ], (i 0 , j 0) ∈ [qe ] × [m i
0 
], such that 

(Zi
j , X

i
j ) = (Zi

j

0
0 , Xj

i0
0 ). 
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COMET-128 : Security Proof Sketch 

Identifying bad events 

• EPmatch (encryption-primitive state matching): 

B9: ∃(i , j) ∈ [qe ] × [m i ] and i 0 ∈ [qp ], such that (Zi
j , Yj

i ) = (Zbi0 , Yb i0 ). 

B10: ∃(i , j) ∈ [qe ] × [m i ] and i 0 ∈ [qp ], such that (Zi
j , Xj

i ) = (Zbi0 , Xb i0 ). 

• EPKcoll (technical requirement: key exhaustion via primitive query): 

B11: ∃(i , j) ∈ [qe ] × [m i ] such that |{j ∈ [qp ] : Zbj = Zi }| ≥ 2n−1 . 
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COMET-128 : Security Proof Sketch 

Identifying bad events 

• Chain (valid forgery via primitive (and encryption) queries): 
ˆ ˆLet domain(ωp ) := {(Ẑi , Yi )}i∈[qp ] and range(ωp ) := {(Ẑi , Xi )}i∈[qp ]. 

⎧⎨ ⎩ 

i Āi Ai C̄i ) , Cj ) max
C̄i =C

j (¯ + k) if = Aj ∧ (¯ , 6a = (Aj 

0...k−1 0...k−1 

max¯ j (k) otherwise. 
Ai =A
0...k−1 0...k−1 

δi := 

:= 

⎧⎨ ⎩ 

X̄i max¯ ¯ (j) if δi +1 ∈ range(ωp ) Xi ,..., Xi ∈range(ωp )δi +1 j 

δi otherwise. 
δ0 i 

B12: chain using primitive queries 

∃i ∈ [qd ] such that δi ≥ 0, δ0 = `̄i and X̄i 
¯ = T̄i . i `i +1 

B13: partial chain using primitive queries followed by encryption query 

∃i ∈ [qd ], (i 0 , j 0) ∈ [qe ] × [m i
0 
] such that 0 ≤ δi < δi 

0 < `̄i and 

(Z̄i 
δ0 , Ȳδ

i0
0 ) = (Zj

i0
0 , Yj

i
0
0 
). 

i i 
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COMET-128 : Security Proof Sketch 

Bounding Pr [Θ0 ∈ Ωbad] 

• Pr [Kcoll]: using the fact that K ←$ {0, 1}κ 

σe σd qp 
Pr [B1] ≤ ; Pr [B2] ≤ ; Pr [B3] ≤ . 

2κ 2κ 2κ 

qe qd σe σd 
Pr [B4|¬B3] ≤ ; Pr [B5|¬B3] ≤ ; Pr [B6] ≤ . 

2n/2 2n/2 2κ 

• Pr [EEmatch|¬Kcoll]: using the fact that K ←$ {0, 1}κ and 

Xi
j , X

i
j

0
0 ←$ {0, 1}n . 

σe 
2 σe 

2 

Pr [B7] ≤ ; Pr [B8] ≤ . 
2n+κ 2n+κ 
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COMET-128 : Security Proof Sketch 

Bounding Pr [Θ0 ∈ Ωbad] 

• Pr [EPmatch|¬Kcoll]: 

� Primitive query occurs before encryption query: 

Pr [EPmatch|¬Kcoll] ≤ 2qp σe /2
n+κ . 

� Primitive query after encryption query: 

{Xi = x : (i , j) ∈ [qe ] × [m i ]} j 

the event maxx mcoll(x) ≥ n. 

�� �� and Mcoll denote Let, mcoll(x) := 

Then, 

Pr [EPmatch|¬Kcoll] ≤ Pr [Mcoll] + Pr [EPmatch|¬(Kcoll ∨ Mcoll)] 

σe 2nqp ≤ + . 
2n−1 2κ 

• Pr [EPKcoll]: using the fact that the number of keys which are repeated 

in primitive queries at least 2n−1 times is at most qp /2
n−1 . 

2σe qp 
Pr [EPKcoll] ≤ . 

2n+κ 18 



COMET-128 : Security Proof Sketch 

Bounding Pr [Θ0 ∈ Ωbad] 

• Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)]: 

Using graph-based analysis (similar to Beetle). 

Let Gωp = (V, E) be an edge-labeled graph where V = domain(ωp ) 

and ((Ẑj , Ŷi ), (Ẑj , Ŷj ), C ∗ ) ∈ E if and only if 

(Ẑj , Ŷj ) = (ICˆ (Ŷi ), ICˆ (Ŷi ) ⊕ C ∗ ) Zi Zi 

A walk W from vertex W0 to Wk with label C = (C1, . . . , Ck ), 
C

denoted W0 → Wk , is 

C1 CkW0 → W1 · · · Wk−1 → Wk . 
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COMET-128 : Security Proof Sketch 

Bounding Pr [Θ0 ∈ Ωbad] 

• Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)]: 

A multi-chain with label C = (C1, . . . , Ck ), denoted CC, is a set of 
labeled walks {W1, . . . , Ws } such that for all 1 ≤ i ≤ s, 

CWi : (Ẑ
i 
0, Ŷ0

i ) → (Ẑi
k , Ŷk

i ) ∧ Ŷ0
1 = · · · = Ŷ0 

s ∧ X̂1 
k+1 = · · · = X̂s

k+1. 

C1 C2 C3 C4 IC 
W1 : (Ẑ1 Ŷ1) (Ẑ1

1 , Ŷ1) (Ẑ2
1 , Ŷ1) (Ẑ3

1 , Ŷ1) (Ẑ3
1 , Ŷ1) X̂1 

0, 0 1 2 3 4 5 

C1 C2 C3 C4 IC 
W2 : (Ẑ2 Ŷ2) (Ẑ1

2 , Ŷ2) (Ẑ2
2 , Ŷ2) (Ẑ3

2 , Ŷ2) (Ẑ3
2 , Ŷ2) X̂2 

0, 0 1 2 3 4 5 

. 

. 

. 
C1 C2 C3 C4 IC 

(Ẑs Ŷs (Ẑs Ŷs (Ẑs Ŷs (Ẑs Ŷs X̂s Ws : (Ẑs Ŷs ) ) ) ) ) 0, 1, 2, 3, 3, 0 1 2 3 4 5 

h i P 
Pr [B11|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ Pr |C¯ | ≥ λi + λi 

C 2κ . i∈[q]d i δi ... m̄
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COMET-128 : Security Proof Sketch h i 
Bound on Pr |C¯ | ≥ λi and λi Cδi ... m̄i 

• Three ways to construct a multi-chain structure: 
ˆ� Forward-only: all queries of the form (Ẑi , Yi ). � � �� 

qp 1 
Pr Cfwd ≥ n ≤ , 

2n 2n 

(by bounding the multicollisions on X̂j ) 
� Backward-only: all queries of the form (Ẑi , Xi ). ˆ

� � �� 
qp 1 

Pr Cbck ≥ n ≤ . 
2n 2n 

(by bounding the multicollisions on Ŷj ) 
� Both forward and backward type queries: 

reduced to multicollision event at some index 1 ≤ i ≤ `̄i (using Pigeonhole-principle). 

� √ � 
i 2 nqp 2qp 1 ¯Pr Cfwd-bck ≥ ` + ≤ . 

2n/2 2n 2n h √ i �   
`i 

2 nqp qp 2qp 3 • Pr |C¯ | ≥ ¯ + 2n + ≤ C 2n/2 2n 2n 2n . 
δi ... m̄i 
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COMET-128 : Security Proof Sketch 

√ l m 
2 nσd qp 2nqd qp 2qd qp 3qd • Pr [B11|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ + + + . 
2κ+n/2 2κ 2n 2n+κ 2n 

• Pr [B12|¬(Kcoll ∨ EEmatch ∨ EPmatch)] can be bounded in a similar fashion. 

√ � � 
2 nσd qp 2nqd qp 2qd qp 3qd 

Pr [B12|¬(Kcoll ∨ EEmatch ∨ EPmatch ∨ B11)] ≤ + + + . 
2κ+n/2 2κ 2n 2n+κ 2n 

√ l m 
6 nσd qp 6nqd qp 4qd qp 6qd Finally, Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ + + + . 
2κ+n/2 2κ 2n 2n+κ 2n 
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COMET-128 : Security Proof Sketch 

Good transcript analysis 

Given any good transcript ω: � � 
Pr[Θ1 = ω] 2σd (σe + qp ) 2qd ≥ 1 − − . 

2κ+n 2n Pr[Θ0 = ω] 

• First term bounds the probability that for some decryption query i an 

intermediate input (Ẑj
i , Ŷj

i ) collides with some encryption/primitive 

input, for j > δi . 

• The second term bounds the probability that som decryption forgery 

succeeds given that all intermediate inputs are fresh. 

This completes the proof. 
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Thank you. Questions... 
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