
On the Security of COMET Authenticated

Encryption Scheme

NIST Lightweight Workshop ’19

Shay Gueron1,2, Ashwin Jha3, Mridul Nandi3

1 University of Haifa, Israel
2 Amazon Web Services, USA
3 Indian Statistical Institute Kolkata, India

Motivation

Lightweight Authenticated Encryption Design

• Block cipher based.

• Rate-1.

• Small state size (close to (n + κ)-bit).

• Simple design (simple operations like XOR, shifts and rotations).

1

COunter Mode Encryption with authentication Tag

Design Summary

• Rate-1 and Feedback-based authenticated encryption mode.

• Combined feedback function:

input is a function of current output and next plaintext block.

• Nonce and block counter-based rekeying.

• Parametrized by the block size, n ∈ {64, 128}. Tag size t = n.

• Two variants:

� COMET-128: Here n = 128, key size κ = 128, nonce size r = 128.

� COMET-64: Here n = 64, key size κ = 128, nonce size r = 120.

2

COMET : High-level Overview

Nonce-based Initial State Derivation

• For COMET-128:

(Y0, Z0) := (K, ICK(N))

• For COMET-64:

(Y0, Z0) := (ICK(0), K ⊕ Nk032)

3

COMET : High-level Overview

Associated Data Processing

4

COMET : High-level Overview

Plaintext Processing

Ciphertext processing is symmetrically defined.

5

COMET : High-level Overview

Tag Generation

6

COMET : Design Features

Design Features

• Design simplicity: Only requires shift and XOR operations apart from

block cipher calls.

• Small state size: Possibility of close to (n + κ)-bit state size in area

optimized implementation.

• Inverse free: No need for block cipher decryption.

• Dynamic key updation: No two blocks share the same key non-trivially.

• Efficiency: Single-pass scheme.

7

COMET : Recommendations

Submissions to NIST LwC Standardization Project

• COMET-128 AES-128/128 instantiated with AES-128/128. [Primary]

• COMET-128 CHAM-128/128 instantiated with CHAM-128/128.

• COMET-64 Speck-64/128 instantiated with Speck-64/128.

• COMET-64 CHAM-64/128 instantiated with CHAM-64/128.

8

COMET : Security Claims

Submissions Confidentiality Integrity
Time Data (in bytes) Time Data (in bytes)

COMET-128 AES-128/128

COMET-128 CHAM-128/128
COMET-64 Speck-64/128
COMET-64 CHAM-64/128

2119

2119

2119

2119

264

264

264

264

2119

2119

2112

2112

264

264

245

245

We focus on the security of COMET-128 .

9

COMET-128 : Security Model

AEAD Security Game

• Indistinguishability game between the ideal system O0 and real system O1,

where

O0 := ($, ⊥, IC±) O1 := (COMET-128.EK, COMET-128.EK, IC
±).

• Advantage of any adversary A against COMET-128 is defined as:

Advaead
COMET-128(A) :=

���Pr h i h
= 1

i��� . O1 O0 A = 1 − Pr A

• A is computationally unbounded, but bounded in number of queries to its

oracle.

• A operates under two restrictions:

� Nonce-respecting: No two encryption query share the same nonce.

� Non-trivial forger: An encryption query (N, A, M) yields (C , T), a

decryption query (N, A, C , T) is not allowed.

10

http:COMET-128.EK
http:COMET-128.EK

COMET-128 : Security Result

Theorem

< 2127 For σe , σd , qp < 2127, and (qe , qd , σe , σd , qp)-adversary A we have

Advaead 4σc
2 14σc qp 3σc

2 3.01qp 4σc qc 6qp σd
COMET-128(A) ≤ + + + + + +

2256 2249 2128 2121 2128 264 2188.5

• qe and qd denote the number of queries to COMET-128.EK and

COMET-128.DK, respectively.

• σe and σd denote the sum of input (associated data and message) lengths

across all encryption and decryption queries, respectively;

qc = qe + qd and σc = σe + σd .

• qp denotes the number of direct queries to the block cipher.

11

http:COMET-128.DK
http:COMET-128.EK

COMET-128 : Security Proof Sketch

Proof tool: Coefficient-H Technique

• Concentrates on the query-response tuple, called the transcript, generated

by A ’s interaction with the oracle at hand.

• Let Θ1: transcript random variable corresponding to O1.

• Let Θ0: transcript random variable corresponding to O0.

• Identify a set of bad transcripts, Ωbad.

• Compute Pr [Θ0 ∈ Ωbad] ≤ �bad.

Pr [Θ1 = ω] • Show that ≥ (1 − �ratio) for all ω /∈ Ωbad.
Pr [Θ0 = ω]

• Then, Advaead
COMET-128(A) ≤ �bad + �ratio.

12

COMET-128 : Security Proof Sketch

Notational Conventions

• Variables in encryption queries are defined as per the figures.

• Variables in decryption queries are defined analogously, topped with a bar.

• Variables in primitive queries are defined analogously, topped with a hat.

Oracle description

• Real oracle: Faithfully responds to encryption, decryption and primitive

queries.

• Ideal oracle:

For the encryption query: samples X1, . . . , X`, T ←$ {0, 1}n, and sets

(Yj , Cj) = %(Xa+j+1, Mj) for all 0 ≤ j ≤ m. Sets Yj = Xj ⊕ Aj for

1 ≤ j ≤ a. Returns (C, T).

For decryption query: Returns ⊥ symbol.

For primitive query: Responds faithfully using IC± .

• After the query phase, both the oracles release all encryption query

internal variables and the secret key. 13

COMET-128 : Security Proof Sketch

Identifying bad events

• Kcoll (key guessing/recovery):

B1: ∃i ∈ [qe], j ∈ [m i], such that Zj
i = K.

B2: ∃i ∈ [qd], j ∈ [¯ i], such that Z̄i m j = K.

B3: ∃i ∈ [qp], such that Zbi = K.

B4: ∃i ∈ [qe], such that Zi
0 = ∗k0n/2 .

B5: ∃i ∈ [qd], such that Z̄i
0 = ∗k0n/2 .

i0 Ni0 B6: ∃(i , j) ∈ [qe i], (i 0 , j 0) ∈ [qd] × [¯], such that Ni = ¯] × [m m 6 and

Zi Z̄i0 = j j0 .

• EEmatch (encryption-encryption state matching):

B7: ∃(i , j) ∈ [qe] × [m i], (i 0 , j 0) ∈ [qe] × [m i
0
], such that

(Zi
j , Yj

i) = (Zi
j

0
0 , Yj

i
0
0
).

B7: ∃(i , j) ∈ [qe] × [m i], (i 0 , j 0) ∈ [qe] × [m i
0
], such that

(Zi
j , X

i
j) = (Zi

j

0
0 , Xj

i0
0).

14

COMET-128 : Security Proof Sketch

Identifying bad events

• EPmatch (encryption-primitive state matching):

B9: ∃(i , j) ∈ [qe] × [m i] and i 0 ∈ [qp], such that (Zi
j , Yj

i) = (Zbi0 , Yb i0).

B10: ∃(i , j) ∈ [qe] × [m i] and i 0 ∈ [qp], such that (Zi
j , Xj

i) = (Zbi0 , Xb i0).

• EPKcoll (technical requirement: key exhaustion via primitive query):

B11: ∃(i , j) ∈ [qe] × [m i] such that |{j ∈ [qp] : Zbj = Zi }| ≥ 2n−1 .

15

COMET-128 : Security Proof Sketch

Identifying bad events

• Chain (valid forgery via primitive (and encryption) queries):
ˆ ˆLet domain(ωp) := {(Ẑi , Yi)}i∈[qp] and range(ωp) := {(Ẑi , Xi)}i∈[qp].

⎧⎨ ⎩

i Āi Ai C̄i) , Cj) max
C̄i =C

j (¯ + k) if = Aj ∧ (¯ , 6a = (Aj

0...k−1 0...k−1

max¯ j (k) otherwise.
Ai =A
0...k−1 0...k−1

δi :=

:=

⎧⎨ ⎩

X̄i max¯ ¯ (j) if δi +1 ∈ range(ωp) Xi ,..., Xi ∈range(ωp)δi +1 j

δi otherwise.
δ0 i

B12: chain using primitive queries

∃i ∈ [qd] such that δi ≥ 0, δ0 = `̄i and X̄i
¯ = T̄i . i `i +1

B13: partial chain using primitive queries followed by encryption query

∃i ∈ [qd], (i 0 , j 0) ∈ [qe] × [m i
0
] such that 0 ≤ δi < δi

0 < `̄i and

(Z̄i
δ0 , Ȳδ

i0
0) = (Zj

i0
0 , Yj

i
0
0
).

i i

16

COMET-128 : Security Proof Sketch

Bounding Pr [Θ0 ∈ Ωbad]

• Pr [Kcoll]: using the fact that K ←$ {0, 1}κ

σe σd qp
Pr [B1] ≤ ; Pr [B2] ≤ ; Pr [B3] ≤ .

2κ 2κ 2κ

qe qd σe σd
Pr [B4|¬B3] ≤ ; Pr [B5|¬B3] ≤ ; Pr [B6] ≤ .

2n/2 2n/2 2κ

• Pr [EEmatch|¬Kcoll]: using the fact that K ←$ {0, 1}κ and

Xi
j , X

i
j

0
0 ←$ {0, 1}n .

σe
2 σe

2

Pr [B7] ≤ ; Pr [B8] ≤ .
2n+κ 2n+κ

17

COMET-128 : Security Proof Sketch

Bounding Pr [Θ0 ∈ Ωbad]

• Pr [EPmatch|¬Kcoll]:

� Primitive query occurs before encryption query:

Pr [EPmatch|¬Kcoll] ≤ 2qp σe /2
n+κ .

� Primitive query after encryption query:

{Xi = x : (i , j) ∈ [qe] × [m i]} j

the event maxx mcoll(x) ≥ n.

�� �� and Mcoll denote Let, mcoll(x) :=

Then,

Pr [EPmatch|¬Kcoll] ≤ Pr [Mcoll] + Pr [EPmatch|¬(Kcoll ∨ Mcoll)]

σe 2nqp ≤ + .
2n−1 2κ

• Pr [EPKcoll]: using the fact that the number of keys which are repeated

in primitive queries at least 2n−1 times is at most qp /2
n−1 .

2σe qp
Pr [EPKcoll] ≤ .

2n+κ 18

COMET-128 : Security Proof Sketch

Bounding Pr [Θ0 ∈ Ωbad]

• Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)]:

Using graph-based analysis (similar to Beetle).

Let Gωp = (V, E) be an edge-labeled graph where V = domain(ωp)

and ((Ẑj , Ŷi), (Ẑj , Ŷj), C ∗) ∈ E if and only if

(Ẑj , Ŷj) = (ICˆ (Ŷi), ICˆ (Ŷi) ⊕ C ∗) Zi Zi

A walk W from vertex W0 to Wk with label C = (C1, . . . , Ck),
C

denoted W0 → Wk , is

C1 CkW0 → W1 · · · Wk−1 → Wk .

19

COMET-128 : Security Proof Sketch

Bounding Pr [Θ0 ∈ Ωbad]

• Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)]:

A multi-chain with label C = (C1, . . . , Ck), denoted CC, is a set of
labeled walks {W1, . . . , Ws } such that for all 1 ≤ i ≤ s,

CWi : (Ẑ
i
0, Ŷ0

i) → (Ẑi
k , Ŷk

i) ∧ Ŷ0
1 = · · · = Ŷ0

s ∧ X̂1
k+1 = · · · = X̂s

k+1.

C1 C2 C3 C4 IC
W1 : (Ẑ1 Ŷ1) (Ẑ1

1 , Ŷ1) (Ẑ2
1 , Ŷ1) (Ẑ3

1 , Ŷ1) (Ẑ3
1 , Ŷ1) X̂1

0, 0 1 2 3 4 5

C1 C2 C3 C4 IC
W2 : (Ẑ2 Ŷ2) (Ẑ1

2 , Ŷ2) (Ẑ2
2 , Ŷ2) (Ẑ3

2 , Ŷ2) (Ẑ3
2 , Ŷ2) X̂2

0, 0 1 2 3 4 5

.

.

.
C1 C2 C3 C4 IC

(Ẑs Ŷs (Ẑs Ŷs (Ẑs Ŷs (Ẑs Ŷs X̂s Ws : (Ẑs Ŷs))))) 0, 1, 2, 3, 3, 0 1 2 3 4 5

h i P
Pr [B11|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ Pr |C¯ | ≥ λi + λi

C 2κ . i∈[q]d i δi ... m̄

20

COMET-128 : Security Proof Sketch h i
Bound on Pr |C¯ | ≥ λi and λi Cδi ... m̄i

• Three ways to construct a multi-chain structure:
ˆ� Forward-only: all queries of the form (Ẑi , Yi). � � ��

qp 1
Pr Cfwd ≥ n ≤ ,

2n 2n

(by bounding the multicollisions on X̂j)
� Backward-only: all queries of the form (Ẑi , Xi). ˆ

� � ��
qp 1

Pr Cbck ≥ n ≤ .
2n 2n

(by bounding the multicollisions on Ŷj)
� Both forward and backward type queries:

reduced to multicollision event at some index 1 ≤ i ≤ `̄i (using Pigeonhole-principle).

� √ �
i 2 nqp 2qp 1 ¯Pr Cfwd-bck ≥ ` + ≤ .

2n/2 2n 2n h √ i �
`i

2 nqp qp 2qp 3 • Pr |C¯ | ≥ ¯ + 2n + ≤ C 2n/2 2n 2n 2n .
δi ... m̄i

21

COMET-128 : Security Proof Sketch

√ l m
2 nσd qp 2nqd qp 2qd qp 3qd • Pr [B11|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ + + + .
2κ+n/2 2κ 2n 2n+κ 2n

• Pr [B12|¬(Kcoll ∨ EEmatch ∨ EPmatch)] can be bounded in a similar fashion.

√ � �
2 nσd qp 2nqd qp 2qd qp 3qd

Pr [B12|¬(Kcoll ∨ EEmatch ∨ EPmatch ∨ B11)] ≤ + + + .
2κ+n/2 2κ 2n 2n+κ 2n

√ l m
6 nσd qp 6nqd qp 4qd qp 6qd Finally, Pr [Chain|¬(Kcoll ∨ EEmatch ∨ EPmatch)] ≤ + + + .
2κ+n/2 2κ 2n 2n+κ 2n

22

COMET-128 : Security Proof Sketch

Good transcript analysis

Given any good transcript ω: � �
Pr[Θ1 = ω] 2σd (σe + qp) 2qd ≥ 1 − − .

2κ+n 2n Pr[Θ0 = ω]

• First term bounds the probability that for some decryption query i an

intermediate input (Ẑj
i , Ŷj

i) collides with some encryption/primitive

input, for j > δi .

• The second term bounds the probability that som decryption forgery

succeeds given that all intermediate inputs are fresh.

This completes the proof.

23

Thank you. Questions...

23

Acknowledgments

This work is supported in part by The Ministry of Science and Technology,

Israel, and the Department of Science and Technology, Government of

India, DST/INT/ISR/P-20/2017.

Shay Gueron is supported by

The Israel Science Foundation (grant No. 1018/16);

NSF-BSF Grant 2018640;

The BIU Center for Research in Applied Cryptography and Cyber

Security, in conjunction with the Israel National Cyber Bureau in the

Prime Minister’s Office;

The Center for Cyber Law & Policy at the University of Haifa in

conjunction with the Israel National Cyber Directorate in the Prime

Minister’s Office.

The authors would like to thank Mustafa Khairallah for sharing his

observations on bad conditions B4 and B5.

24

	Structure Bookmarks
	Motivation
	COunter Mode Encryption with authentication Tag
	COMET : High-level Overview
	Figure
	COMET : High-level Overview
	Figure
	COMET : High-level Overview
	Figure
	COMET : High-level Overview
	Figure
	COMET : Design Features
	COMET : Recommendations
	COMET : Security Claims
	COMET-128 : Security Model
	COMET-128 : Security Result
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	COMET-128 : Security Proof Sketch h i
	COMET-128 : Security Proof Sketch
	COMET-128 : Security Proof Sketch
	Acknowledgments

