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FrodoKEM 

FrodoKEM primer: 
 FrodoKEM is a lattice‐based KEM. 
 It bases its hardness on the (conservative) LWE problem. 
 Performs well desite using unstructured lattices. 

FrodoKEM updates: 
 FrodoKEM makes it to round 2! 
 Adds a new parameter set (n = 1344) for NIST level 5 security. 
 Changed PRNG / seed expander from cSHAKE to SHAKE. 
 Slightly changed the error distribution parameter for FrodoKEM‐640. 



How does FrodoKEM compare to other PQC in hardware?

FrodoKEM 

FrodoKEM is still comprised of a number of key modules: 
 Matrix‐matrix multiplication, of sizes n = 640, 976, and 1344. 
 Uniform and Gaussian error generation. 
 Random oracles via SHAKE for CCA security. 

As well as a number of subsidiary operations: 
 Matrix packing (and unpacking) to vectors. 
 Message encoding and decoding. 
 Parsing vectors and bit‐strings. 
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PQC in Hardware to date 

 Code‐based designs have large KeyGen / decryption, but fast encryption. 
 Isogeny‐based also have large overall designs, but seem to be a lot slower. 
 Lattice‐based designs nicely balance area/performance across all operations. 

Table 1: PQC on FPGA, results taken from pqczoo.com. 
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put 

Is
og
en
y

H
La
tti
ce

 
Co

de

SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654 

Niederreiter KeyGen [WSN18] Str‐V − − 39,122 − 827 230 75 
Niederreiter Encrypt [WSN18] Str‐V − 6,977 4,276 − 0 448 50,000 
Niederreiter Decrypt [WSN18] Str‐V − 48,050 20,815 − 88 290 12,500 

SIKE 3‐cores (Total) [KAK18] Vir‐7 27,713 38,489 11,277 288 61 205 27 
SIKE 6‐cores (Total) [KAK18] Vir‐7 50,084 69,054 19,892 576 55 202 32 

SIKE 3‐cores (Total) [RM19] Vir‐7 49,099 62,124 18,711 294 23 226 32 

NewHope KEX Server [KLC+17] Art‐7 20,826 9,975 7,153 8 14 131 13,699 
NewHope KEX Client [KLC+17] Art‐7 18,756 9,412 6,680 8 14 133 12,723 

NewHope KEX Server [OG17] Art‐7 5,142 4,452 1,708 2 4 125 731 
NewHope KEX Client [OG17] Art‐7 4,498 4,635 1,483 2 4 117 653 

Round5 (All) (SoC) [PQShield] Art‐7 7,168 3,337 2,344 0 − 100 − 

FrodoKEM‐640 Encaps [HOKG18] Art‐7 6,745 3,528 1,855 1 11 167 51 
FrodoKEM‐640 Decaps [HOKG18] Art‐7 7,220 3,549 1,992 1 16 162 49 

pqczoo.com


PQC in Hardware to date 

 Code‐based designs have large KeyGen / decryption, but fast encryption. 
 Isogeny‐based also have large overall designs, but seem to be a lot slower. 
 Lattice‐based designs nicely balance area/performance across all operations. 

Table 2: PQC on FPGA, results taken from pqczoo.com. 
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put 

H SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654 

Co
de

Niederreiter KeyGen [WSN18] Str‐V 
Niederreiter Encrypt [WSN18] Str‐V 
Niederreiter Decrypt [WSN18] Str‐V 

− − 39,122 − 827 230 
− 0 448 
− 88 290 

75 
50,000 
12,500 

− 6,977 4,276 
− 48,050 20,815 

Is
og
en
y SIKE 3‐cores (Total) [KAK18] Vir‐7 

SIKE 6‐cores (Total) [KAK18] Vir‐7 

SIKE 3‐cores (Total) [RM19] Vir‐7 

27,713 38,489 11,277 288 61 205 
576 55 202 

294 23 226 

27 
32 

32 

50,084 69,054 19,892 

49,099 62,124 18,711 

La
tti
ce

 

NewHope KEX Server [KLC+17] Art‐7 
NewHope KEX Client [KLC+17] Art‐7 

NewHope KEX Server [OG17] Art‐7 
NewHope KEX Client [OG17] Art‐7 

Round5 (All) (SoC) [PQShield] Art‐7 

FrodoKEM‐640 Encaps [HOKG18] Art‐7 
FrodoKEM‐640 Decaps [HOKG18] Art‐7 

20,826 9,975 7,153 8 14 131 
8 14 133 

2 4 125 
2 4 117 

0 − 100 

1 11 167 
1 16 162 

13,699 
12,723 

731 
653 

− 

18,756 9,412 6,680 

5,142 4,452 1,708 
4,498 4,635 1,483 

7,168 3,337 2,344 

6,745 3,528 1,855 51 
49 7,220 3,549 1,992 

pqczoo.com


PQC in Hardware to date 

 Throughput per FPGA slice can tell us how performant designs are for the 
hardware resources they consume (1 Slice ≈ 4 LUTs + 8 FFs). 

 However, this metric excludes BRAM/DSP usage ̸→ not ASIC‐friendly. 
 Not all use Artix‐7 FPGAs, and require a v. expensive Virtex‐7 ($50 vs $9k). 

Table 3: PQC on FPGA, results taken from pqczoo.com. 
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put Thr‐Put / Slice 

H SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654 0.088 

Co
de

Niederreiter KeyGen [WSN18] Str‐V − − 39,122 − 827 230 75 0.002 
Niederreiter Encrypt [WSN18] Str‐V − 6,977 4,276 − 0 448 50,000 11.693 
Niederreiter Decrypt [WSN18] Str‐V − 48,050 20,815 − 88 290 12,500 0.601 

Is
og
en
y SIKE 3‐cores (Total) [KAK18] Vir‐7 27,713 38,489 11,277 288 61 205 27 0.002 

SIKE 6‐cores (Total) [KAK18] Vir‐7 50,084 69,054 19,892 576 55 202 32 0.002 

SIKE 3‐cores (Total) [RM19] Vir‐7 49,099 62,124 18,711 294 23 226 32 0.002 
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NewHope KEX Server [KLC+17] Art‐7 20,826 9,975 7,153 8 14 131 13,699 1.915 
NewHope KEX Client [KLC+17] Art‐7 18,756 9,412 6,680 8 14 133 

NewHope KEX Server [OG17] Art‐7 5,142 4,452 1,708 2 4 125 
NewHope KEX Client [OG17] Art‐7 4,498 4,635 1,483 2 4 117 

Round5 (All) (SoC) [PQShield] Art‐7 7,168 3,337 2,344 0 − 100 

12,723 1.905 

731 0.428 
653 0.440 

− − 

FrodoKEM‐640 Encaps [HOKG18] Art‐7 6,745 3,528 1,855 1 11 167 51 0.028 
FrodoKEM‐640 Decaps [HOKG18] Art‐7 7,220 3,549 1,992 1 16 162 49 0.025 

pqczoo.com


With parallelisation, this should also benefit hardware designs...

Keccak as a seed expander 

 For FrodoKEM [HOKG18], NewHope [OG17], and BLISS [PDG14] hardware 
designs, the Keccak mid‐range core1 is utilised, consuming ~750 slices. 

 However, Keccak is a bottleneck in many of the PQC implementations. 
 Keccak’s high‐speed core, increases area consumption by 3‐8x [BDP+12]. 
 This might make it more expensive than the PQC scheme itself ̸→ impractical. 
 Recently, software implementations of PQC candidates have used alternatives: 

 FrodoKEM‐640 is faster by 5x using xoshiro128** [BFM+18]2. 
 Round5 is faster by 1.4x using LWC candidate SNEIK(HA) [Saa19]. 

1https://keccak.team/hardware.html 
2This PRNG might not qualify for cryptographically secure randomness. 

https://keccak.team/hardware.html
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Additionally we estimate a first‐order masking technique for decapsulation.

What’s different? 

 The proposed hardware designs follows FrodoKEM’s specifications, expect 
changing the use of SHAKE for PRNG / seed expanding. 

 Instead, we propose using the more compact (unrolled) Trivium [DCP08]. 
 Trivium still qualifies for cryptographically secure randomness. 
 Being more compact; we are able to stack more of them together to enable 
parallel multiplication of the (time consuming) matrix operations. 
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Efficient first‐order masking 

 The efficiency of Trivium also allows us to efficiently mask decapsulation. 
 A random matrix (R) is used to mask the operation M = C − B′S as: 

M1 = C − B′ (S + R), 

M2 = C − B′ (S − R). 

 Then, M is recovered by calculating (M1 + M2)/2. 
 We parallelise these operations, as before, so that runtime is not affected. 
 We also ensure no two operations of the same row/column are used in parallel, 
in case power traces can be combined to cancel out the masking. 



Parallelising matrix multiplication 

 We want to optimise are FrodoKEM’s LWE calculations of the form: 

C ← S′A + E′ . 

 S′ × A is the real bottleneck, with at most ∼7.5m 16‐bit multiplications. 
 Thus, we parallelise the matrix multiplication: 

…

DSP1 DSP2 DSP3 DSP4

… … … …

… … … …

Figure 1: Parallelising matrix multiplication, for S′ × A, used within LWE 
computations for an example of k = 4 parallel multiplications. 



But how does this affect the area consumption of the hardware designs?

Hardware design overview 

 All designs require k/2 Triviums, outputing 32‐bits of randomness per clock. 
 Each 32‐bit value is split into 16‐bits and given to the DSP for MAC operations. 
 Thus, we make a k‐times improvement in the throughput / multiplication. 

ARITHMETIC
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Figure 2: A high‐level overview of the proposed hardware designs for FrodoKEM. 
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Table of results (encapsulation) 

 We provide results for Encaps for two parameter sets. 
 We reduce area consumption by ∼40% for the smallest Encaps design. 
 We also increase the throughput by >16x and are still smaller than the 
state‐of‐the‐art [HOKG18] without using BRAM. 

Table 4: Artix‐7 FPGA resource consumption of the proposed FrodoKEM Encaps hardware designs, 
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*). 

Slices Thr‐Put FrodoKEM Protocol LUT FF DSP BRAM MHz 

Encaps‐640 1x 4,246 2,131 1,180 1 0 190 58 
Encaps‐640 4x 4,620 2,552 1,338 4 0 183 221 
Encaps‐640 8x 5,155 3,356 1,485 8 0 177 427 
Encaps‐640 16x 5,796 4,694 1,692 16 0 171 825 

Encaps‐640 [HOKG18] 6,745 3,528 1,855 1 11 167 51 

Encaps‐976 1x 4,650 2,118 1,272 1 0 187 25 
Encaps‐976 4x 4,996 2,611 1,455 4 0 180 94 
Encaps‐976 8x 5,562 3,349 1,608 8 0 175 183 
Encaps‐976 16x 6,188 4,678 1,782 16 0 168 350 

Encaps‐976 [HOKG18] 7,209 3,537 1,985 1 16 167 22 



*

*

*

*

Table of results (decapsulation) 

 We provide results for Decaps for two parameter sets. 
 We reduce area consumption by ∼40% for the smallest Decaps design. 
 We also increase the throughput by >14x and are still smaller than [HOKG18]. 

Table 5: Artix‐7 FPGA resource consumption of the proposed FrodoKEM Decaps hardware designs, 
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*). 

FrodoKEM Protocol LUT FF Slices DSP BRAM MHz Thr‐Put 
*Decaps‐640 1x 4,466 2,152 
Decaps‐640 1x 10,518 2,299 

*Decaps‐640 16x 6,881 5,081 
Decaps‐640 16x 14,528 5,335 

1,254 
2,933 

1,947 
4,020 

1 12.5 162 
1 0 190 

16 12.5 149 
16 0 160 

49 
57 

710 
763 

*Decaps‐640 [HOKG18] 7,220 3,549 1,992 1 16 162 49 

*Decaps‐976 1x 4,888 2,153 
Decaps‐976 1x 14,217 2,295 

*Decaps‐976 16x 7,213 5,087 
Decaps‐976 16x 18,960 5,285 

1,390 
3,956 

2,042 
5,274 

1 19 162 
1 0 188 

16 19 148 
16 0 157 

21 
25 

306 
325 

*Decaps‐976 [HOKG18] 7,773 3,559 2,158 1 24 162 21 



Graphical representation of results 
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Figure 3: FPGA slice consumption of FrodoKEM protocols on a Xilinx 
Artix‐7. Decaps values overlap to show results with (*) and without BRAM. 



Graphical representation of performance 
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Figure 4: Comparison of the throughput per slice performance on Xilinx Artix‐7 FPGA. 



Thanks for listening! Any question?

Conclusions 

 We propose an alternative hardware design for 
FrodoKEM, using an unrolled Trvium as PRNG. 

 We universally save ∼40% in hardware resources on 
the FPGA for the same throughput performance. 

 Moreover, by using the same FPGA area we are able 
to increase the throughput, universally, by ∼16x. 

 It would be interesting to see how other PQC 
schemes would benefit from this change, too. 
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